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Abstract

Combining image processing and optimization techniques, we automatically align a lattice
of points (atoms) with horizons and faults in a 3-D seismic image . Connecting these points
yields an unstructured space-filling polyhedral (atomic) mesh . This single data structure
can integrate multiple tasks, such as seismic interpretation, reservoir characterization, and
flow simulation, thereby reducing work cycle omes and errors .

Horizons and faults in seismic images often correspond to discontinuities in subsurface prop-
erties, such as permeability. Degending on the type of mesh elements desired, we align the
lattice of atoms either on or alongside image features . 3-D Delaunay triangulation of atoms
aligned on image features yields a tetrahedral mesh, with triangular faces of tetrahedra co-
incident with subsurface discontinuities. Alternatively, 3-D Delaunay triangulation of atoms
aligned alongside image features yields a dual Voronoi polyhedral mesh in which polygonal
faces coincide with subsurface discontinuities .

Introduction

Today's work cycle from seismic imaging to reservoir simulation requires a variety of data
structures - simple arrays, triangulated surfaces, non-manifold frameworks, corner-point
grids, etc . - to represent the earth's subsurface . Conversions among these different repre-
sentations are both time consuming and error prone .

We may reduce both werk cycle omes and errors by performing tasks such as seismic inter-
pretation, reservoir characterization, and flow simulation using a single space-filling mesh .
For example, consider the horizontal slice of a 3-D seismic image of geologie faults shown
in Figure la . Figure lb shows a space-filling mesh of triangular elements that is aligned
with those faults (bold white Tines) . Flow vettors (black Tine segments) indicate both the
direction and velocity of Huid flowing from an injector in the upper left to a producer in
the lower right part of the image. We performed both the faalt interpretation and the flow
simulation on the same space-filling mesh .

Today, one typically interprets faults by drawing curves on a seismic image, interpolating
those curves to form surfaces, stitching those surfaces together to form a topologically consis-
tent framework, all before creating a mesh within that framework . In contrast, we interpret
faults after aligning a space-filling mesh with relevant features in a seismic image . In other
words, we interpret seismic images using a data structure that works for flow simulation .

The flow simulation illustrated in Figure lb is simple . Permeability is constant and isotropic,
except at the faults, which we assumed to be impermeable, Flow is single-phase and steady-
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Figure 1 : Fiom seismic imaging (a) to flow simulation (b) . The seismic image of

geologie faults in (a) is a 256 x 256-sample (6 .4 x 6.4-km) horizontal slice taken from
a 3-D seismic image that was processed to enhance such discontinuities. The space-

filiing mesh in (b) was automatically aligned witti features in the seismic image, and

then used to identify the faults and simulate the flow of Huid around theet .

state (computed using a. discontinuous Galerkin method [1]) . These limitations merely sim-
plify t.he illustra.tioti, and are not required by the meshirig proces .

We call the mesh of triangles in F igure lb an dtomic mesh, because we compute the locations
of mesh nodes (atoms) using simple models of inter-atomic forces . Attractive and repuls ive
forces arnong atoms cause theet to asrange themselves in a geometrically regelar lattice , as
in a crystal .

Cryst.al lattices provide a useful analogy for geologie modeling . In this analogy, layers of

atoms in crystals correspond to geologie layers, and disloca .tior~s in crystal s correspond to

geologie faults . We manipulate geologie roodels by moving atom s . As we move ene atom,

atoms nearby move along wit ah it , thereby preserving the regularity of the lattice . (Physical

roodels such as this are commonly used in meshing [2] [3] .} Here, we move at.oms to align a

mesh witti features in an image .

In this context, an image is sinzply a uniformly sampled 2-D or 3-D array of numbers . Atomic
meshing is most relevant for images that contain edges or ridges witti which mesh elements
shauld be aligned, so that discontinuities in insaged properties are well represented by the
mesh . For example, given a CT scan of a core sarriple, we might align a mesh witti gore space
boundaries . In another example, we might align a mesh witdi discontinuities in permeability,
in an image representing a reservoir model [3] . In all cases, we assume that images are
imperfect, and that interactive manipulation of mesties must be feasible .

In this paper, we demonst.rate atomic meshing using seismic images, in which the relevant
features correspond to geologie faults and horizons . We describe the meshing proces in detail
sufficient for its impleanentation by others . We show that the same proces can generate
mesties of either Delaunay triangles and tetrahedra or Voronoi polygons and polyhedra for
2-D and 3-D inleges, respectively.



To align a mesh with an image, we perform the following sequence of steps :

1 . Process the image to detect and normalize features of interest .

2. Fill space spannel by the image with apseudo-random lattice of atoms .

3. Move the atoms to minimize a potential energy functtion of the lattice .

4 . Connect the atoms to create either a Delg. rLnay or Voronoi mesh.

Image processin g

We begin by processing an image to detect and normalize features with which to a.lign a
mesh. Typically, those features are either edges or ridges, and techniques for such processing
are well known . In the example of Figure la, the faults appear as (white) ridges, so we
describe our image processing for this type of feature .

We first compute Gaussian derivatives [4] of the image to obtain, for each image sample,
the two components of its gradient . In the example of Figure la, we chose a Gaussian
filter of width o, = 3 samples . We then compute outer products of those derivatives, and
smooth those products with a Gaussian filter (here with width c, = 12 samples) to obtain
a 2 x 2 symmetrie and positive-definite matrix . For each image sample, the eigenvector
corresponding to the largest eigenvalue of that matrix is normal to linear features (the faults)
in the image [5] . We use the direction of this eigenvector, again for Bach image sample, to
compute a directional derivative . Zero crossings of that derivative, for samples where image
sample valnes exceed a computed threshold, correspond to ridges that we mark with sample
value 1 . This proces yields a normalized binary image, with sample valnes equal to 0 or 1 .

Sample valnes equal to 1 in the binary image correspond to the ridges in the image of
Figure la. To facilitate lattice optimization, as described below, we negate and smooth
this normalized image with another Gaussian filter (with, in this example, width u = 1 .5
samples) . The image in the background of Figure lb is the final result of our processing .
Most sample valnes in this proceseed image are zero ; the dark features correspond to samples
with negative valnes . Thus, the effect of our processing has been to detect significant ridges
of various heights and and convert them into valleys with constant depth and width . As
discuseed below, we typically choose the valley width to be 1/4 the desired minimum distance
between atoms.

Lattice initialization

Initially, we distribute atoms pseudo-randomly in the space spannel by the image, consistent
with a specified density defined in that space . That density may be constant, but to enhance
lattice optimization, it should vary with the density of features in the image .

Let the vector x devote image sample coordinates . For a 2-D image, x has two components
x and y . For a 3-D image, x has three components x, y, and z. Then, let b(x) devote the
normalized image, a function of sample coordinates x . For reasons described below, we want
the nominal distance d(x) between a pair of atoms near x to satisfy two conditions :

d(x) = /
-(~2b~X~~ and 1Vd(x)1 <G 1, (1)

V

where c is a constant .
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The first condition implies that the minimum value of d(x) is inversely proportional to the

maximum value of 1 b(x)1 . That maximum value, in turn, is inversely proportional to
the width u of the final Gaussian smoothing filter that we apply during image processing .
Typically, we choose the constant c so that the minimum distante dmZn g-, 4U .

The second condition ensures a smoothly graded lattice and mesh . In practice, we first
compute d(x) using the first condition and then smooth it to satisfy the second condition .
When smoothing d(x), we take care to ereserve the minimum distante dmin , which occurs
near features detected during image processing .

Recall that, in the final smoothing for Figure lb, we used u = 1 .5 samples, which implies
a minimum distante of d,,,,i „ ;:zd 6 samples . For clarity in this figure, we increased the Bizes
of mesh elements by specifying a larger, constant nominal distante d(x) = 9 samples . We
illustrate the use of non-constant d(x) in examples below .

Given the nominal distante function d(x), we create a pseudo-random initial distribution of
atoms. We favor a pseudo-random distribution, because it is isotropic . Any orientation of
the lattice should be induced by image features, not by the initial distribution of atoms .

We create this initial distribution of atoms by first plating one atom at each corner of the
image and one atom in a pseudo-random location far away from those corners . We then
compute the Delaunay triangulation (e .g., [6]) of these atom locations. This creates a small
number of triangles (in 2-D, or tetrahedra, in 3-D) . The circumcenters of these triangles
(tetrahedra) are prospective locations for new atoms . For each triangle (tetrahedron), we
compute the ratio r/d of the radius r of its circumcircle (circumsphere) to the nominal
distante function d = d(x) evaluated at its circumcenter .

We then add these triangles (tetrahedra) to a priority queue . We remove the triangle (tetra-
hedron) with largest r/d from the queue, add an atom at its circumcenter, and update the
Delaunay triangulation. This update creates new triangles (tetrahedra) . It also destroys
some old ones, which we ignore as we proces the queue. As we create each triangle (tetra-
hedron), we compute its ratio r/d. If r/d is larger than a constant value (0 .760 in 2-D, 0 .803
in 3-D), we add it to the queue . We continue in this way until the queue is empty.

This initialization scheme is an adaptation of methods developed for Delaunay mesh refine-
ment [7] [8] . The resulting initial lattice of atoms is isotropic and consistent with the nominal
distante function d(x) . Our next step is to align the atoms with features in the image b(x),
while maintaining their nominal distantes d(x) .

Lattice optimization

Our goal in lattice optimization is a balante between the regularity of the lattice and its
alignment with image features . We achieve this balante by minimizing a total potential
energy P of the lattice, which we define (as in [9]) by the weighted su m

P = P (X l, X2 , . . . . xj _ (1 - ,Q) A + OB> ( 2 )

where A is the atomic potential energy defined by

n n

A=A(X1, X2 , . . . . xj X
jl

(3)
2 z=1 j=1 d (x7 ~

and B is the image potential energy defined by
n

i-1
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In all of these definitions, xl, x2, . . . , xn are the coordinates of n atoms in the lattice .

The weight Q in equation (2) determines the relative contributions of A and B to the total
potential energy P . When 13 = 0, atoms tend toward a regular (face-centered cubic) lattice
that is not aligned with the image . When 0 = 1, atoms are sensitive to only image sample
values ; they will congregate in the minima and vacate the maxima in the image, yielding a
highly irregular lattice . Provided that the conditions in equations (1) are satisfied, choosing
,Q N 2 yields a lattice that is both regular and aligned with image features .

We define the atomic potential energy A in equation (3) in terms of a potential function
O (u), where u - Ixi - x jl /d(xj ) is the normalized distance between two atoms. Suitable
potential functions O(u) have been developed by others working in different contexts [2][10] .
To ensure that the optimized lattice remains consistent with the nominal distante function,
we choose O(u) to be large for u « 1 and to have a minimum at u = 1 . To reduce the tost
of computing A, we limit the range of interactions among atoms by choosing O (u) to be zero
for u > 2 . The function O(u) defined by Shimada [2] ,

153 _ 9 u + 19u3 _ 5 u 4 O < u <

(u)
256 8 24 16 ~ 2 )

o' 2 C u,

has these proporties . Recalling the condition ]Vd(x)l « 1, the factor 1/2 in our definition
of atomic potential energy A compensates for the appearance of O[Ixi - xj j/d(xj )] ti O[Ixj -
xij/d(x2)] twice in that definition .

The image potential energy B in equation (4) is relatively easy to evaluate . For each atom
location xi, we simply look up (or interpolate) the image sample value at that location . The
sum of these valnes is B .

Given our definition of lattice potential energy, we uso a generic optimization algorithm to
search efficiently for atom locations xl, x2i . . . . xn that minimize that energy. Specifically, we
uso a limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) minimizer . (See [11] .
Note, particularly, the simple two-loop recursion on page 17 .) Like other minimizers, the
L-BFGS method iteratively evaluates a function and its partial derivatives, in its search for
a minimum .

The L-BFGS minimizer requires more computer memory but fewer function evaluations than
the well-known method of conjugate gradients . However, the additional memory required is
insignificant when compared with the memory required to represent an image . Furthermore,
the tost of each function evaluation (computing the lattice total potential energy P) is sig-
nificantly more costly than the other computations performed by the minimizer. Therefore,
the L-BFGS minimizer is well-suited to lattice optimization .

Note that we nood not find the global minimum of total potential energy P . After satisfying
the conditions in equations (1), a local minimum, with atoms close to their initial locations,
yields a lattice that is well aligned with image features .

Delaunay or Voronoi meshes

Our description of lattice optimization above implicitly assumes that atoms are to be aligned
on image features . During image processing, we create normalized valleys (potential minima)
corresponding to those features . Those valleys attract atoms ; minimizing the total potential
energy causes atoms to move into them . Delaunay triangulation of the optimized lattice
then creates triangles (in 2-D, tetrahedra in 3-D) with edges (faces) that tend to be aligned
with image features, as illustrated in Figure 1 .
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Alternatively, we may align atoms alongside image features, by simply changing the sign of
the normalized image b(x) . This change causes valleys to become ridges that repel at.onis .

Inter-atomic forces keep atoms from moving too far away, and thereby maint.ain lattice
regularity. We illustrate this alternativo in Figure 2 . Here, we display Voronoi polygons, witdi

edges well aligned with image features . These polygons correspond to Delaunay triangles
not shown . In the context of reservoir siniulation, Voranoi meshes like these are also known
as PEBI grids [12] .

. ..
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(a) (b)

Figure 2: Voronoi polygonal meshes aligned with (a) the faults imaged in Figure la and
(b) a combination of both horizons and faults in vertical (256 x 256-sample, 6 .4 x 0 .$-
km) slices extracted from two 3-D seismic images .

Figure 3 shows an example of a 3-D Voronoi polyhedral mesh. After nieshing, we interpreted
the 3-D seisrnic image by interactively painting polyliedra, so that atonis witpin the same
iiiterpreted unit have the same color. (The interpretation is best viewed in the full-color
electronic version of this abstract .) We then selected one unit painted gold and computed
the surface surrounding all atoxns witti that color . Parts of that surface are shown in Fig-
ure 3b. Large displacerrients have caused this unit to become discontiguous across several
fault blocks .

Eit.lier type of mesh Delaunay or Voronoi - is capable of representing discontinuities in
imaged properties. In practice, hoorever, we Eind Voronoi mesties, such as those in Figuren 2
and 3, preferable, for several reasons .

First . Voronoi polygons vary smoothly witti small perturbations of atom locat.ions, whereas
Delaunay triangles do not . In a Delaunay triangulation, a slight change in at .om location may
cause existing t.riangles to be dest.royed and new triangles to be created . Second, proporties
that we associate witti Voronoi polygons (e.g., permeability) are implicitly associated witti

atoms, and those proporties remgin well-defined as we move atoms . In contrast, proporties
associated wit.h Delaunay triangles may become undefined as triangles are destroyed and
created. Third, in a 3-D atomic mesh, there are about six timen as many Delaunay tetrahedra
as there are Voronoi polyhedra . Finally, 3-D Voronoi polyhedra fond to be welf shaped, even

as same 3-D Delaunay tetrahedra (valled slivers [6 1 [13 j ) fond to be poorly shaped, witti
large surface area but small volume .



(a) (b)

Figure 3: A Voronoi polyhedral mesh of a 3-D seismic image . Three orthogol
~áces (a) of the 256 x 2 56 x 256-sample, (6 .4 x 6 .4 x 0.8-km) image illustrate significa
t : ►ulting. We automatically aligned the 3-D mesh (b) with both faults and horizons

that image, and then interpreted geologie layers by interactively painting polyhedru .
idee the full-color electronic version . )

Sonie of the problerris associa.ted with Delaunay tetrahedral mesties may be solved by using
ai, aiternative 3-D triangulation . Other tr iangulations are feasible, hut their use leads to
o- : er prablems, particular ly in the context of interactive editing .

I : 11,1 of the examples shown ira this paper, we aligned mesties wijn image features automat-

i 'y, without manaal editing . However, in regions that are poorly imaged, we may Weed to
int.eractively add, remove, or move atoms . As we do so, we reoptimize the lattice and update
mesh elements for only those atoms near the atam being edited . We restriet reoptimization
to a small region hy giving each atom a terriperature t between 0 and 1 . An atom's tem-
perature scales the forces applied to it disring lattice reoptimization . Atoms nearest to the
atom being manipulated have temperature t = i ; they move freely . Temperature decreases
to t = 0 for atoms further (say, 5 d(om)) away ; atoms not in the neighborhood of the a .tom
being edited are frozen and cannot move .

Conclusion

Using well-known image processing and optimization techniques, we may automatically align
a lattice of points en or alongside features in 3-D images. After connecting Chose points to
foren Delaunay tetrahedra or Voronoi polyhedra, we obtain space-filling mesties witti edges
and faces aligned with image features . Those mesties, in turn, facilitate other tasks, such as
seismic interpretation and flow simulation .

Int.egration of multiple tanks is the primary goal of this research . In fact, this work began
with the question, "what if, disring seinmie interpration, faalt framework building, reservoir
modeling, all that stuff, we were forceá to use a data structure that would work for flow
simulation?" Our answer in this paper is incomplete, particularly witti respect to reservoir
property modelmg. Bist part of the answer is illustrated in Figure 3, where our use of a
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space-filling polyhedral mesh has enhanced seismic interpretation, by enabling interactive
3-D painting of geologie layers .

Furthermore, though beyond the scope of this paper, computations like those used in flow
simulation enable us to perform much of this painting automatically. (Think of paint flowing
witkin geologie layers, but not across faults .) The resulting segmentation of the mesh implies
a domain decomposition that may, in turn, enable more efficient flow computations . Such
cross-fertilization follows from our use of a common data structure .
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