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Abstract

Fine scale heterogeneities can have significant effects on flow performances in subsurface
formations . Fine-scale geostatistical realizations generated from well-log and seismic data are
required to quantify the impact of such heterogeneities on flow . These realizations in many cases
require number of grid cells on the order of 106-10 7 , hence making it too demanding CPU wise
to directly history match geostatistical models . Non-uniformly gridding these models for
emphasizing the heterogeneities does not necessarily present a solution since the practice of
geostatistics on non-uniform grids is inefficient .

In this paper we provide an entirely new approach to these problems by proposing a solution
which is geostatistics based yet having the flexibility to work on non-uniformly gridded models .
Hence coupling geostatistics with non-uniformly upscaled models results in an effective history
matching technique incorporating all information at their scales . With the proposed approach we
mainly target three advantages . Well and seismic data will still be effectively incorporated in the
realizations . Flow simulations will be performed on non-uniformly upscaled models hence will
be relatively fast . Finally the resulting field which is history matched will include the geology
and will be on a non-uniformly gridded model for emphasizing heterogeneities or desired
specifications, hence fotore predictions can be made fast, no posterior upscaling is required .

Introduction

History matching is an important step in reservoir characterization ; conditioning realizations to
well-log or seismic data alone is not enough . One major challenge of data integration lies in the
fact that each data has its own resolution and area of coverage . Well-log data has high resolution
bot are sparse . Production data informs a much larger scale bot carries little information on local
heterogeneity. Since well-log data are considered to be hard data, fine scale gridding is needed to
include this type of data in the final reservoir model . History matching techniques, which
typically require a large number of flow simulations, cannot be directly applied to the high
resolution geostatistical models because of the CPU costs of current finite difference simulators .

History matching methods such as the Sequential Self Calibration Method (Wen, Deutsch and
Cullik, 1998) address this problem by upscaling the initial fine scale geostatistical model . First,
an initial seed realization with up to 106-10 7 grid cells is generated . Next, this initial model is
upscaled uniformly to 103-104 grid cells rendering flow simulations feasible . The initial upscaled
model is perturbed until history match is achieved . Next, the coarse scale history-matched model
is downscaled using block conditioning algorithms (Tran et al ., 1999) for the following reasons :
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The coarse-scale history matched models do not necessarily honor the fine scale well-log
data.

Fine-scale realizations are often requested as input to more sophisticated non-uniform
upscaling methods, and to local grid refinement .

However this last downscaling step presents various problems such as :

• The fine scale model may not match anymore tightly the production data since the
downscaling procedure adds additional short scale structuren to the model . Also the proces
of downscaling does not provide a single unique answer as upscaling does, Ying (2001) .

• The downscaled realizations need to be upscaled again to make flow simulations feasible .
There is again no guarantee that this newly upscaled model matches history .

In summary, many history matching methods tend to go through a sequence of upscalings and
downscaling. This might not be an efficient way to integrate data of variable scales since the
sequence of upscaling and downscaling affects the matching of information at different scales .

One alternative to this problem is to generate directly non-uniformly gridded models . However
this would call for generating spatially correlated block effectave or average properties defined
on different support volumes. Geostatistics is ill-equipped to deal with such variables .

We propose to construct in parallel a fine scale and the corresponding non-uniform coarse
model. We make the upscaling phase part of the history matching proces instead of a prior or
posterior process . Perturbations to the permeability field (or any other property that effects the
production signal) are performed on the fine scale model, that fine scale model is then upscaled
after each perturbation ; in particular flow simulation is done (rapidly) on the coarse model. The
fine scale model perturbations are guided by the results of the coarse model simulation results .

This approach could provide three advantages :

1 . We obtain two end-results : a fine scale model, and a corresponding coarse, non-uniformly
gridded, model that is history matched . The laffer can be used directly as input to the
reservoir simulator.

2. The coarse non-uniform model includes the relevant high and low permeability information
from Wells and seismic as these condition the parallel fine scale model .

3. All history match flow simulations are done on the coarse, allowing a speed-up of the history
match effort.

History Matchin g

Before the essence of our proposed method we review shortly the history matching algorithm
used. Although it should be stressed that any other algorithm can be used for this purpose .

In this paper we use the method of history matching by the gradual deformation first presented in
Roggero and Hu (1997), later modified by Ying and Hernandez (2000) to account for well-log
data. Many types of algorithms exist which are shortly reviewed. The original gradual
deformation method combines Gaussian random functions while maintaining their statistical
properties (histogram and variogram) . In a first step, one takes three individual fine scale
realizations which honor the hard data and apply a normal score transform to each of them . Next,
the normai score realizations, are pixel-wise linearly combined through a single parameter r in a
way so that the renuiting normai score realization honors all hard data and the statietics of the
initial realizations. The resulting realization is then back transformed into the data space . For any

gaven parameter value r the renuiting realization is evaluated in a flow simulator renuiting in the



desired objective function . It is now a matter of finding the optimal value r p` lesding to a
minimized objective function . Since only one parameter (r) needs to be optimized we can apply
any existing one dimensional optimization code, e .g. Dekker Brent [6] . This proces is repeated
until a history match is achieved .

Another type of gradual deformation relies on perturbation of random numbers . In this approach,
deformations are achieved by gradually modifying the random numbers used in generating
stochastic realizations using the sequential simulation methodology . This perturbation of random
numbers is parameterized by a single parameter r that can be optimized, as discussed above . In
this approach, any type of sequential simulation method, such as facies-based categorical
methods, can be used, not necessarily being restricted by Gaussian assumptions .

Proposed Method

The deformation algorithms explained in the previous section require multiple flow simulations
in the inner loop to check matching history . Such flow simulations are CPU demanding if
performed on high resolution fine scale realizations . To speed up the proces we propose to
couple the deformation algorithm with upscaling techniques . Fine scale realizations are upscaled
non-uniformly, then flow simulation is performed on the upscaled model, and the differente
between calculated and measured production data is based on that upscaled model .

The fine scale geostatistics and the corresponding coarse scale flow simulation grids although
parallel are kept separated. Multiple but fast flow simulations are performed on the coarse scale
grid while data conditioning and statistical continuity reproduction is obtained from the fine
scale grid . Non-uniform upscaling on the other hand will preserve important regions that would
have great impact on flow .

The remaining talk is to provide an efficient non-uniform upgridding and related upscaling
method. The upscaling needs to be CPU efficient .

Upgridding

Many grid cell upscaling methods exist, either static or flow based . In this study we have chosen
to use the flow based upgridding technique proposed by Durlofsky et al . (1995) . This technique
targets the high permeability and high flow regions . The technique requires a single phase,
incompressible flow simulation to be run on the fine scale geostatistical model . A velocity field
ux,Y (for 2-D reservoirs, with y the vertical direction) is derived which a non-uniform grid is
determined. Once the velocity field uij (i,j are the integer indices for the fine scale grid cell) is
determined they are averaged along each rowj as :

ns

u i,l

uavg
nx

where nx represents the number of grid cells in the x direction . Similarly the average velocity for
each column i is calculated as :

n ,

1 uij

u ~Vg = l= 1 (2 )
ny

where ny represents the number of grid cells in the y direction. Next, the row average velocities
are standardized as :

8 `h Eu ropean Conference on the Mathematics of Oil Recove ry - Freiberg , Germany , 3 - 6 September 2002



4

avg

st ul

u~ max u j°g, J - I, . . . , Yly 3

Í

Similarly for the columns :

~g
ui St = u (4)

max u`Ng,i =1, . . .,nx
t

We present first the algorithm for upgridding in only one dimension (uplayering) then proceed to
the general 3-D case .

In order to preserve important high permeability layers, we preserve layers with high
standardized velocity and upgrid layers with low us' . The desired level of upgridding determines
the threshold velocity above which high velocity layers should be preserved . For example for a
verg coarse upgridding requirement, one would expect high velocity layers to be combined . To
achieve an upgridding method that a certain target coarse grid dimension, we approximately
introduce the following tuning parameters :

u` is the maximum acceptable cumulative velocity of all fine-scale layers composing any
coarse-scale upgridded layer. If u` is set to zero then the corresponding upgridded model will
have the same number of layers as that of the fine scale model . As u` is increased the
dimensions of the coarse model are decreased until u` reaches the sum of all layers. At this
point the coarse model would only be composed of a single layer .

n' is the maximum allowable number of fine-scale layers composing any coarse-scale
upgridded layer. If n' is set to 1 then the corresponding upgridded model will have the same
number of layers as that of the fine scale model . As n ' is increased then u` will become more
dominant in determining the gridding .

Case Studies

In this section demonstarte the approach in 3 case studies . The first two will be simple 2D cases
which we hope will give a clear understanding to the proposed method . Finally the third case
will be a 3D quarter five spot pattern .

A Gaussian Mode l

The first case study is done on a 2D gaussian model . In the first model we focus on layering . The
reference permeability field and its corresponding fractional flow curve is given in Figure-1 . The
production history lasts for 500 days under fixed bottom hole pressures of SSOOpsi and 4500 psi .
Figure-2a represents the behavior of the objective function for two different starting points . Both

objective functions tend to reach a plateau around 12 iterations, indicating that the deformation
parameter r has been optimized 12 times . Figure-2b shows the progress of fractional flow curves
during iterations. At the end of iteration 20 we have a reasonable history match . Figure-3 shows
the progression of the permeability fields along with the reference permeability field and its
corresponding non-uniformly upscaled version . As we progress in matching the history, we keep
the fine scale and the coarse scale models in parallel . All of the fine scale models honor the
required spatial statietics, ultimately two end models are obtained ; a fine scale model and a
coarse scale model which we can use to make fast fotore predictions . Figure-4a illustrates the
flow responses of realizations conditional only to the hard data and the variogram . The scatter is
relatively large, especially in terms of break-through times see Figure-4a . Note that all flow
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responses are evaluated on the fine grid . Figure-4b. shows results after history matching
production data limited to the first 500 days . A good bracketing of fotore predictions up to 2000
days is achieved . Note that flow responses are now calculated on the coarse grid.

A Facies Model

In this section we present the results of the proposed method applied on permeability
distributions with discrete facies . We use the SNESIM (Strebelle, 2002) code to generate facies
using the training image depicted in Figure-5a . Each of the foor facies is then assigned a constant
permeability of 3, 30, 300 and 3000 md respectively . As gradual deformation method we apply
the gradual deformation of random numbers methodology .

The injection/production scheme is taken the same as the first case in the previous section . The
reference field and the corresponding fractional flow curves are given in Figure5b and Sc
respectively. As shown from Figure-5b layering is emphasized by assigning the lowest and
highest permeabilities to the facies that extend horizontally . Figure-6a shows the fractional flow
of 20 unconditional realizations built from the same training image of Figure5a resulting in a
wide scatter . History matching decreases the uncertainty of the fotore predictions as shown in
Figure-6b .

Conclusions

The following conclusions are obtained from this study :

1 . With the new proposed method the CPU demand of flow simulators is significantly
decreased, since we are running flow simulations on coarse models, hence the entire history
matching proces becomes relatively fast .

2 . Geostatistics on the uniform fine scale has successfully been coupled with non-uniform
coarse models simply by making the upscaling process a part of the history matching, hence
making the algorithm effective in terms of integrating various kinds of data at their relevant
scales .

3 . The resulting history matched realization, is upscaled and non-uniformly gridded . Future
predictions in this case can be made faster. Also no upscaling errors are introduced. These
coarse models stip contain important information about the field's obtained from the fine-
scale model .
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Figure- 1 : The reference permeability field and its corresponding fractional flow curve for the
gaussian layered case .
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Fignre-2 : (a) Progression of the objective function, (b) Progression of the fractional flow curves .
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Figure-3 : Progression of the perrneability field during history matching .
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Figure-4 : (a) Flow responses before bistory matching, (b) Flow responses after bistory matching.
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Figure-5 : (a) The training image (400x150) used to create the reference permeability field for the
facies model, (b) The refemce permeability field (50x50), (c) Flow response of the referenc e

permeability field.
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Figure-4: (a) Flow responses heiare bistory matching, (b) Flow responses after bistory matching .
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