S110

Simulation Geological environmental shortage water of groundwater and the possibility of activity Earthquake Jafarah Bas

Elosat*, (People's Committee for Education and Scientific Re)

Моделирование влияния Землетрясения Jafarah Bas на геологическую среду и подземные ханилища воды

Elosat*, (People's Committee for Education and Scientific Re)

Моделювання геологічного екологічних нестачі води з підземних вод та можливості діяльності Землетрус Jafarah Bas

Elosat*, (People's Committee for Education and Scientific Re)
Libya is a country with poor water resources that do not have any periods of water surface due to the groundwater nature and it lies within the climate semi-arid where long-range and geological factors play a major role in shaping the natural features of the region during the era of Oligocene and Pleistocene during the time trio and quartet. It is believed that al-Jafara Basin, during the quartet, was completed for the construction of natural water during Pleistocene and the Jafara basin is water one of the most important sedimentary basins which fed the western region stretching from the five east to come in contact with the sea west towards the Tunisian border were heading southwest towards Mslath offer 150km and length of 130km and displays.

The pelvis to the operations of cracking and sediment to the emergence of a group of fractures to the northwest and south-east until the Abu-Krach mountain distance of 100 to 200m about to turn east and west to includes the crack Azizyah the great to the deposits of the valley and mud where they became the basin exposed to the abortions and drilling of wells without considering the natural conditions which may cause environment problem such as earthquake and which is under the ground to it annually to almost one million earthquake does not feel people are mostly either weak or to occur in areas humans or don not feel earthquake usually only when is intensity to 4 degrees on Richter scale and is great when the power up to 7 degree on Richter scale. Jafara Basin of areas may be subject earthquake due to low water levels underground and a set of faults with fracture that may energy operation earthquake slope because of the low pressure the class because of the exploitation of water led to the edges and cracks parallel to the contour lines may relate to these cracks together which increased the breadth a result of increased landing differential layers due to low pressure on the natural equilibrium line and the lowering of fresh water and drained, the establishment basin faults and fractures as a result of the tensile and compression of the layers, causing gaps and depressions mainly Azizyah refraction is a great inverted from he spoke seismic basin where rocks may bend and stone energy and when sliding occurs in the areas of weakness and focus earthquake that are at a depth of 20km and which have a depth of 700km to occur by the removal of emerging major fault due excessive pressure on the depletion of starch water located between the layers which may occur sudden movement of the energy accumulated and stored on floppy mud millions of years. The cracks are formed far from the spacing of the compression and accompanied by the landslides which may pose and between the spaces between particles of materials and there is a direct relationship between the edges of the panels on the sides of continents and fault so that the primitive edges to slip angle of 540 degree, the Jafara Basin has easy access four water reservoirs which include the formation al-azizyah cover the stones and sand with limestone formation Abuchebo covered limestone formation and composition of kkh and qasr-al-haj and the quantity of water in this basin about 4.2x6100km$^3$. 
We will try in this paper to speak on the problem of depletion of the water Jafara basin water north-west Libya and seismic indicators which may occur due to the increased pressure drop between pressure class and low water pressure due to water depletion.