Geosat Technology has developed InnoEx™, an integrated exploration approach. The underlying principle is to use various exploration technologies in order to maximize the exploration accuracy and to reduce exploration and subsequent development costs and risks. The InnoEx™ key phases are:

1. Phase 1: GEOSAT remote sensing analysis: three(3) independent methods are used to define hydrocarbon prospects:
 - Structural lineament analysis: Systematic search for linear objects through an automated process - computer program (SLARD)
 - Analysis of thermal infrared images
 - Spectral analysis: Analysis of multi-spectral space images for the survey of hydrocarbon deposits are connected with the determination of specific anomalies of spectral brightness. Specific anomalies are caused by up-streaming fluxes of water and gases that affect the temperature of the field.
 - Additional available data will be incorporated:
 o Geological data
 o Lithological data
 o Geophysical data

 Basic principle is the determination of structures which have an active hydrocarbon system. These active hydrocarbon systems can be detected via the quantification of micro-seepage on the surface with its various characteristics. After the data selection, and data processing, the results of the three(3) independent methodologies are superimposed and interpreted and special hydrocarbon assessment maps created. Scope of phase 1 is to identify prospective hydrocarbon areas that should be further analyzed. By this approach areas for further ground evaluation and exploration can be reduced to 10-15% of the initial survey size. Hence the high graded prospective areas thereby identified qualify for additional ground works that are subsequently effectuated through phase 2 of our InnoEx approach: The application of 5 non-seismic methods over the high graded areas determined through phase 1:
 2. Micro-Biological and Geochemical method (MBGE) (ground work): known as Microbial Oil Survey Technique
 3. High Resolution Ground Magnetics (HRGM) (ground work) testing for distinctive magnetic signatures of hydrocarbon reservoirs.
 4. High Resolution Ground Gravity (HRGG)
 5. Magnetoe Telluric (MT) (ground work) for measuring low frequency currents in the Earth’s crust and determining the type of sub-surface structure encountered: minerals, petroleum reservoirs, geothermal fields, ground water, etc.
 6. High Resolution Geo Electrochemical (HRGC) (ground work) to determine the exact drilling point of oil and gas prospects detecting the metallic ion anomaly of the surface (High Resolution Geochemistry)

 All ground works are carried out in cooperation with companies specialized in this field. The data collected is then processed. Currently Geosat is developing a specific software to enable the combined analysis of the data from the different key phases. Based on the results of the Geosat study and the complementary non-seismic ground work the seismic acquisition program will be carried out over the predefined areas with an already proven active hydrocarbon system.

 The result of this analysis concept is a highly cost effective method that combines data from various independent exploration technologies to complement the seismic methods, fine tuning the interpretation and
making the drilling and testing stage more accurate and focused. The variables and their interpretation (weighting etc.) can be easily adapted to the changing circumstances; the multifaceted technological approach guarantees a higher accuracy and increasing exploration success quotes.

The result of this EXPLORATION concept is a highly cost effective method that combines data from various independent exploration technologies to complement the interpretation of the acquired seismic data and making the drilling stage more accurate and focused. This technological approach guarantees a higher accuracy and is increasing exploration success rates substantially.