Khuﬀ Sequence KS6: Paleorelief-inﬂuenced Facies and Sequence Patterns in the Lower Khuﬀ Formation, Sultanate of Oman

Daniel Bendias (University of Tübingen <daniel.bendias@gmail.com>), Thomas Aigner (University of Tübingen), Michael Pöppelreiter (Shell) and Bastian Köhrer (Wintershall)

This outcrop analog study of Lower Khuﬀ Sequence KS6 (Saiq Formation) aims to capture lateral reservoir facies distribution during the initial phase of basin-ﬁll. The Hercynian tectonic event triggered the erosion of Cambrian to Carboniferous strata in Oman and formed the topography of the Sub-Khuﬀ Unconformity. When the Neo-Tethys Ocean ﬂooded the Arabian Shield clastic sediments, the so-called "Basal Khuﬀ Clastics" became preferentially deposited in possible paleo-lows. One main objective of this study was to unravel the effect of this paleo-relief on reservoir facies distribution within the overlying sediments.

The lowermost Khuﬀ Sequence 6 (KS 6) can be subdivided into four different facies associations (backshoal, shoal, foreshoal and oﬀshoal) with distinct sedimentological characteristics and reservoir potential. The KS6 represents one transgressive-regressive cycle. In contrast to younger Khuﬀ sequences (KS4 to KS1) the underlying paleo-relief seems to strongly affect the thickness and facies composition of the KS6 and the Basal Khuﬀ Clastics.

Workflow and Methods

The concept of dynamic stratigraphy (Aigner, 1985; Aigner et al. 1998; Kerans and Tinker 1997) guided this study from 1-D sedimentological observations in the ﬁeld to 2-D correlation to the ﬁnal 3-D model (Figure 1).

1-D: Three months of intense ﬁeldwork led to detailed logs of ﬁve sections of the KS6 Sequence. The 1-D dataset includes Dunham textures, outcrop gamma-ray and microfacies data provided by more than 200 thin sections.

2-D: Facies cycles, outcrop gamma-ray and biostratigraphy were used to create several correlation scenarios.

3-D: In order to delineate strengths and weaknesses of the different 3-D geocellular modelling approaches, a broad spectrum of modelling methods was tested. Finally a range of models was generated based on the “Truncated Gaussian with trends” algorithm using different correlation scenarios and varying lateral extents of reservoir facies types (Figure 2).

Conclusions

The initial paleo-relief apparently controlled the thickness of the initial Khuﬀ clastics, and that of the overlying KS6 carbonates as well as their composition. The correlation strategy to follow paleo-landscape surfaces using all available data resulted in a "pseudo-layer cake" stratigraphic architecture with subtle shingles. This study revealed potential reservoir units in the KS6, commonly regarded as non-reservoir in the subsurface of Oman. In the transgressive part of the investigated sequence, the predominant reservoir facies are bioclastic crinoidal grainstones with only poor diagenetic potential, concentrated around the margin of a paleohigh. Oolitic/peloidal grainstones in the upper regressive part have a much higher diagenetic potential and are areally much more widespread. Abundance and lateral extent of individual grainstones strongly vary with stratigraphic position. Within the palaeo-geographic framework of a shoal to oﬀshoal setting, the thickest and laterally most persistent shoal bodies occur during peak regression.

Third Arabian Plate Geology Workshop
Permo-Triassic (Khuﬀ) Petroleum System of the Arabian Plate
Kuwait City, Kuwait, 28 November - 1 December 2011
References

Figure 1: Workflow from 1-D sedimentological observation in the field to 2-D correlation, with obvious changes in thickness between the sections and 3-D modeling.
Figure 2: Facies model generated with Truncated Gaussian with trends method, view from northeast. Potential reservoir facies is displayed in red.