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SUMMARY
Different challenges of the full waveform inversion (FWI) will be encountered as we need to move away
from acoustic approximation to improved elastic modeling. Quantitative high-resolution imaging could be
achieved through efficient gradient estimation of the cost function but also through Hessian influence
estimation which is crucial for multiparameter reconstruction. We propose an analysis of the different steps
required to achieve the computation of these ingredients: their complexities, the algorithm
organization bringing the attention to issues for performing the medium reconstruction.
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Summary

Different challenges of the full waveform inversion (FWI) will be encountered as we need to move

away from acoustic approximation to improved elastic modeling. Quantitative high-resolution imaging

could be achieved through efficient gradient estimation of the cost function but also through Hessian

influence estimation which is crucial for multiparameter reconstruction. We propose an analysis of the

different steps required to achieve the computation of these ingredients: their complexities, the algorithm

organization bringing the attention to issues for performing the medium reconstruction.

Introduction

Full waveform inversion (FWI) is a data-fitting inverse problem which allows for the estimation of

subsurface parameters from the recordings of seismic waves near the surface with a theoretical spatial

resolution of half a wavelength (Virieux and Operto (2009) for a recent review). Since its first intro-

duction in seismics (Lailly, 1983; Tarantola, 1984), this imaging tool has shown to be quite successful

and inversions of 3D data have been possible thanks to the access to increased computational resources

(Plessix, 2009; Plessix and Perkins, 2010; Sirgue et al., 2010), essentially under the acoustic approxima-

tion for single parameter reconstruction. However, FWI remains a computationally intensive imaging

tool and resources become a limitation, specially as more 3D data becomes available, higher frequen-

cies are injected in the inversion, or, more complex wave physics (visco-elastic) is accounted for during

seismic modeling.

Quantitative reconstruction of multiple parameters will require efficient estimations of the gradient op-

erator of the misfit function and will also require the contribution of the Hessian operator. These estima-

tions are obtained by solving seismic simulations aside other data manipulations we must achieve in the

framework of the FWI.

After the short presentation of the theory, we shall analyze the algorithm structures and the computa-

tional complexities before showing a typical computational example related to gradient estimations. We

shall address also the computational burden when considering multi-parameter reconstruction as they

require an estimation of the Hessian influence.

Theory

We first start from the time-domain wave equation written in the generic form

∂tu(x, t)−N(m(x))H(∇)u(x, t) = s(x, t), (1)

where u(x, t) is the wavefield unknown formed by particle velocity and stress components. The symmet-

rical operator N(m) depends on physical properties only and the symmetrical operator H(∇) is related

to spatial derivatives. This expression, coming from Burridge (1996), allows to write the wave equation

as a first-order (implicit) symmetrical hyperbolic system even for general anisotropic media, which is

quite appealing to derive adjoint formulation as the forward operator, under this expression

N−1(m(x))∂tu(x, t)−H(∇)u(x, t) = N−1(m(x))s(x, t), (2)

is self-adjoint. The solution can be still obtained from the first equation through an explicit time-

marching algorithm using numerical discretization methods while not possible with the second equation.
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 We can then naturally derive the time-domain FWI gradient expression as

G (x) =
∫

T
dtλ T (x, t)

∂N−1(m(x))
∂m

∂tu(x, t), (3)

where λ (x, t) is the adjoint wavefield which satisfies a similar equation than 1 with a specific source

term which is given by residues at receivers weighted by the N operator.

We may also consider the frequency-domain elastodynamic equation from either explicit system (1) or

implicit system (2) and we could spatially discretize it into a linear system

B(x,ω)u(x,ω) = s(x,ω), (4)

where the matrix B is the so-called impedance matrix (Marfurt, 1984). Even if we reduce the number of

unknowns through parsimonious elimination (Luo and Schuster, 1990) when possible, the linear system

(4) could be quite large, sparse and indefinite: it can be solved either with a direct or with an iterative

solver.

Direct solver: although the LU decomposition of the impedance matrix is expensive (Amestoy et al.,

2000), Operto et al. (2007) have shown the feasibility of direct solvers at low frequencies for the acous-

tic case. Recent developments that take advantage of some low-rank properties of the impedance matrix

have further improved the efficiency of 3D direct solvers and allow to consider anisotropy as well (Wang

et al., 2012; Weisbecker et al., 2013). Figure 1 displays the memory improvement as it is the bottle-neck

for this solving approach very appealing when considering many sources.

Iterative solver: iterative methods are other possible modeling engines for FWI applications in the

acoustic cases (Plessix, 2007, 2009) although fast convergence of the iterative solve might be an is-

sue. Recently, Gordon and Gordon (2010) have proposed a parallel iterative method CARG-CG based

on Kaczmarz approach. This method has been proven efficient for the resolution of the 2D and 3D

Helmholtz equation in heterogeneous media, even at high frequencies (van Leeuwen et al., 2012; Gor-

don and Gordon, 2013). Extension to the elastodynamic equations is currently investigated by Li et al.

(2014).

Steady state: finally, frequency solutions could be obtained from the steady state of the time-domain

solutions of both u(x, t) and λ (x, t) by computing their Fourier transform in the entire domain.

Considering these frequency-domain solutions, we can rely on a frequency-domain FWI gradient ex-

pressed as

G (x) = ∑
ω
−iωλ T (x,ω)

∂N−1(m(x))
∂m

u(x,ω). (5)

Therefore, we may consider four strategies for computing FWI gradients: a time-domain forward

modeling and a time-domain gradient computation (T D/T D), a time-domain forward modeling and

a frequency-domain gradient estimation (T D/FD), a direct-solver frequency-domain modeling and gra-

dient estimation (FD/FDD) and an iterative-solver frequency-domain modeling and gradient estimation

(FD/FDI).

For both time-domain and frequency-domain FWI formulations, additional tasks should be performed

we shall consider in our complexity analysis.

Computational complexities

We consider a 3D grid of size N3 with Nrec receivers, nt time steps for time integration, n f frequencies,

ni iterations for solving the frequency linear system. We need to extract solutions at receivers through

projections which are the sinc approximation of Hicks (2002) for finite-difference grids as well as ad-

joint source injections. We may assume complexity behaviours such that Nrec ≈ N2, nt ≈ N, n f ≈ 1

and N3
hicks ≈ N. By judicious preconditioning of the acoustic equation (Plessix, 2007; Riyanti et al.,

2007; Erlangga and Nabben, 2008), the quantity ni should be independent of N (some strategies are still

sensitive to the frequency) while the CARG-CG which could be applied to the acoustic or elastic equa-

tions independent of the frequency still requires a significant number of iterations. We consider now the
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Figure 1 Flop scalability of the BLR multifrontal factorization of the Laplacian operator discretized with a 3D
7-point stencil, revealing a O(N4.95) time complexity for ε = 10−14. Results are obtained with an experimental
version of MUMPS embedding Block Low-Rank (BLR) technologies and the standard Full-Rank (FR). The numer-
ical parameter Îţ defines how much approximation we accept to put in the factorization. A small value leads to a
good accuracy but potentially less complexity improvements, while a large value leads to a loosely accurate solu-
tion but achieved through a substancially cheaper process. Very large values often lead to unacceptable solutions
(after Weisbecker).

complexity behaviour per source.

• The required steps to compute the T D/T D gradient include the forward modeling, the extraction of

the solution at receivers, the misfit evaluation and residual computations. These residuals are used as

sources for adjoint modeling while stored fields at boundaries and final stage will allow computing again

the incident field backward in time for getting the gradient. In practice, only half of the elapsed time

is used for modeling purposes with complexity O(N4) while other tasks as projections of complexity

O(N4) require significant resources. The gradient computational complexity is of the same order.

• The T D/FD gradient implementation stores the incident field avoiding repeating the incident model-

ing but the additional Fourier extraction of similar complexity as the modeling and the gradient O(N4)
leads to one third of the elapsed time for modeling purposes.

• The FD/FDD gradient implementation avoids the Fourier extraction which leads to a gradient com-

putational complexity of O(N3) while the modeling has a complexity in O(N6) for the factorization and

in O(N4) for the solving step. Projections stays at the complexity O(N4). In spite of its time complexity

and its memory-demanding feature, this approach may be appealing when considering many sources.

• The FD/FDI gradient implementation should have a modeling computational complexity of O(N3)
with a multiplicative coefficient which turns out to behave as N for current iterative solvers with poten-

tial improvements.

We may also investigate other ways to reduce the complexity as source encoding, compressive sensing

and random fluctuations strategies where cross-talks should be mitigated (Krebs et al., 2009; Herrmann

et al., 2009; Ben Hadj Ali et al., 2011; van Leeuwen et al., 2011)

Improving FWI efficiency will require to pay attention not only to modeling issues but also to other

operations as projections on acquisition deployment or Fourier transforms if needed. In the TD/FD

FWI code GeoInv3D and the TD/TD code TOYxDAC_TIME developed in the SEISCOPE group with

two-level or three-level parallelisms (one MPI parallelism over seismic sources, and one OpenMP paral-

lelism for each source and eventually a domain-decomposition MPI parallelism), we have observed the

significant elapsed time of Fourier transforms. Of course, the estimation of the Hessian influence will

still put modeling kernels as the main task of the FWI.

From monoparameter to multi-parameter reconstruction

Multi-parameter FWI remains however a very challenging task. Promotion of local updating of various

parameters requires the Hessian information as this operator partially corrects for dimensionalities of
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Figure 2 A zoom on the BP model. The top panel is obtained with l-BFGS-B approach while the bottom panel
nearby the real model is obtained by the truncated Newton method (after Métivier)

parameters, for parameter crosstalk, for acquisition imprint and limited source bandwidth, for poor

illumination and second-order scattering effects (Fichtner and Trampert, 2011; Métivier et al., 2013),

relaxing requirements on initial model and frequency content for specific applications. This will require

additional forward modeling steps and could increase significantly the computational cost of the FWI.

A review of these issues is proposed in Operto et al. (2013).

Different behaviours between l-BFGS-B based only on gradient estimations and storages and truncated

Newton methods based on second-order adjoint formulation leading to additional forward and adjoint

modeling with different source terms have been illustrated by Métivier et al. (2014). One can see that

these two ways of considering the Hessian impact do provide different results when considering the

same framework for the inversion (Figure 2). These very different behaviours will have an impact on

multi-parameter reconstruction.

Conclusions

FWI challenges could be of different nature related to efficient algorithms for forward and adjoint mod-

ellings, for gradient and Hessian evaluations but also to data manipulations, such as Fourier transforms

or Hicks interpolation or shape functions interpolation, which could be a noticeable part of the FWI

workflow. Multi-parameter reconstruction, a necessary step for better quantification of the subsurface,

will be a challenging step for FWI as trade-off between parameters may exist. After the different in-

vestigations on the gradient estimation performed by many groups, we should be now more concerned

by the Hessian operator and efficient methods for estimating its effects. Handling these issues will be

strongly related to specific implementation of FWI on modern HPC platforms.
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