1887
Volume 27, Issue 3
  • E-ISSN: 1365-2117

Abstract

Abstract

The Wheeler diagram is a type of chronostratigraphic chart and is one of the fundamental instruments available in the geologists' toolkit that is used to understand spatiotemporal relationships of strata. Over the last four decades, these diagrams have continued to improve due to advances in seismic technology. This article examines the historical developments behind Wheeler diagrams, not only stressing their merits, but also their pitfalls and the role that sequence stratigraphic principles have played in interpreting these diagrams. It is emphasized that the diagrams are only complete if one utilizes the thicknesses of a sequence stratigraphic unit (sequence, systems tracts) – a missing dimension that turns a 3D Wheeler diagram into 4D. The article also argues that the latter 4D diagrams represent the future for Wheeler diagrams.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12077
2014-07-10
2024-03-29
Loading full text...

Full text loading...

References

  1. Barrell, J. (1917) Rhythms and the measurements of geological time. Geol. Soc. Am. Bull., 28, 745–904.
    [Google Scholar]
  2. Boyd, R., Diessel, C.F.K., Wadsworth, J., Chalmers, G., Little, M., Leckie, D. & Zaitlin, B.. (1999). Development of a Nonmarine Sequence Stratigraphic Model. American Association of Petroleum Geologists (AAPG) Annual Meeting, San Antonio, TX, USA.
    [Google Scholar]
  3. Boyd, R., Diessel, C.F.K., Wadsworth, J., Leckie, D. & Zaitlin, B.A. (2000) Organization of Non Marine Stratigraphy. Advances in the study of the Sydney Basin. University of Newcastle, Callaghan, NSW, Australia.
    [Google Scholar]
  4. Catuneanu, O. (2002) Sequence stratigraphy of clastic systems: concepts, merits, and pitfalls. J. Afr. Earth Sc., 35, 1–43.
    [Google Scholar]
  5. Catuneanu, O. (2006) Principles of Sequence Stratigraphy. Elsevier, Amsterdam, The Netherlands.
    [Google Scholar]
  6. Catuneanu, O. & Zecchin, M. (2013) High‐resolution sequence stratigraphy of clastic shelves II: controls on sequence development. Mar. Pet. Geol., 39, 26–38.
    [Google Scholar]
  7. Catuneanu, O., Abreu, V., Bhattacharya, J.P., Blum, M.D., Dalrymple, R.W., Eriksson, P.G., Fielding, C.R., Fisher, W.L., Galloway, W.E., Gibling, M.R., Giles, K.A., Holbrook, J.M., Jordan, R., Kendall, C.G.S.C., Macurda, B., Martinsen, O.J., Miall, A.D., Neal, J.E., Nummedal, D., Pomar, L., Posamentier, H.W., Pratt, B.R., Sarg, J.F., Shanley, K.W., Steel, R.J., Strasser, A., Tucker, M.E. & Winker, C. (2009) Towards the Standardization of Sequence Stratigraphy. Earth Sci. Rev., 92, 1–33.
    [Google Scholar]
  8. Catuneanu, O., Bhattacharya, J.P., Blum, M.D., Dalrymple, R.W., Eriksson, P.G., Fielding, C.R., Fisher, W.L., Galloway, W.E., Gianolla, P., Gibling, M.R., Giles, K.A., Holbrook, J.M., Jordan, R., Kendall, C.G.S.C., Macurda, B., Martinsen, O.J., Miall, A.D., Nummedal, D., Posamentier, H.W., Pratt, B.R., Shanley, K.W., Steel, R.J.A.S. & Tucker, M.E. (2010) Sequence stratigraphy: common ground after three decades of development. First Break, 28, 21–34.
    [Google Scholar]
  9. Catuneanu, O., Galloway, W.E., Kendall, C.G.S.T.C., Miall, A.D., Posamentier, H.W., Strasser, A. & Tucker, M.E. (2011) Sequence stratigraphy: methodology and nomenclature. Newsl. Stratigr., 44, 173–245.
    [Google Scholar]
  10. Cross, T.A. (1991) High‐Resolution Stratigraphic Correlation from the Perspectives of Base‐Level Cycles and Sediment Accommodation. Rocky Mountain Association of Geologists, Short Course Notes, United States.
    [Google Scholar]
  11. Cross, T.A. & Lessenger, M.A. (1998) Sediment volume partitioning: rationale for stratigraphic model evaluation and high‐resolution stratigraphic correlation. In: Predictive High Resolution Sequence Stratigraphy (Ed. by K.O.Sandvik , F.Gradstein & N.Milton ), Vol. 8 pp. 171–195. Norwegian Petroleum Society Special Publication, Oslo, Norway.
    [Google Scholar]
  12. Csato, I. & Catuneanu, O. (2012) Systems tract successions under variable climatic and tectonic regimes: a quantitative approach. Stratigraphy, 9, 109–130.
    [Google Scholar]
  13. Doyle, P., Bennett, M.R. & Baxter, A.N. (1994) The Key to Earth History: An Introduction to Stratigraphy. Wiley, The University of California, Santa Cruz, CA.
    [Google Scholar]
  14. Eberli, G.P. (2000) The record of Neogene sea‐level changes in the prograding carbonates along the Bahamas transect ‐ leg 166 synthesis. In: Proceedings of the Ocean Drilling Program, (Odp) Scientific Results (Ed. by P.K.Swart , G.P.Eberli , M.J.Malone & J.F.Sarg ), Vol. 166, 167–177. Texas A&M University in collaboration with National Science Foundation and Joint Oceanographic Institutions, Inc., College Station, TX.
    [Google Scholar]
  15. Embry, A.F. (1995) Sequence boundaries and sequence hierarchies: problems and proposals. In: Norwegian Petroleum Society Special Publications (Ed. by R.J.Steel , V.L.Felt , E.P.Johannessen & C.Mathieu ), Vol. 5, pp. 1–11. Elsevier, Stavanger, Norway.
    [Google Scholar]
  16. Emery, D. & Myers, K. (1996) Sequence Stratigraphy. Blackwell Science, Cambridge, Mass., Oxford.
    [Google Scholar]
  17. Eriksson, P.G. & Catuneanu, O. (2004) Third‐Order Sequence Stratigraphy in the Palaeoproterozoic Daspoort Formation (Pretoria Group, Transvaal Supergroup), Kaapvaal Craton. Elsevier Science Ltd., Amsterdam, The Netherlands.
    [Google Scholar]
  18. Grabau, A.W. (1906) Types of sedimentary overlap. Geol. Soc. Am. Bull., 17, 567–636.
    [Google Scholar]
  19. de Groot, P.F.M., Huck, A., de Bruin, G., Hemstra, N. & Bedford, J. (2010) The horizon cube: a step change in seismic interpretation!. Lead. Edge, 29, 1048–1055.
    [Google Scholar]
  20. Hedberg, H.D. (1951) Nature of Time‐Stratigraphic Units and Geologic Time Units. Am. Assoc. Pet. Geol. Bull., 76, Report of Activities:191–193.
    [Google Scholar]
  21. van Hoek, T., Gesbert, S. & Pickens, J. (2010) Geometric attributes for seismic stratigraphic interpretation. Lead. Edge, 29, 1056–1065.
    [Google Scholar]
  22. Hoyes, J. & Cheret, T. (2011) A Review of “Global” Interpretation Methods for Automated 3D Horizon Picking. Lead. Edge, 30, 38–47.
    [Google Scholar]
  23. Jayr, S., Gringarten, E., Tertois, A.‐L., Mallet, J.‐L. & Dulac, J. (2008) The need for a correct geological modelling support: the advent of the Uvt‐ transform. First Break, 26, 73–79.
    [Google Scholar]
  24. Jervey, M.T. (1988) Quantitative geological modeling of siliciclastic rock sequences and their seismic expression. In: Sea Level Changes – an Integrated Approach (Ed. by C.K.Wilgus , B.S.Hastings , C.G.S.C.Kendall , H.W.Posamentier , C.A.Ross & J.C.V.Wagoner ), Vol. 42 pp. 47–69. SEPM Special Publication, Tulsa, OK.
    [Google Scholar]
  25. Keskes, N., Guillon, S., Donias, M., Baylou, P. & Pauget, F. (2004) Method of Chrono‐Stratigraphic Interpretation of a Seismic Cross Section or Block, Elf, Exploration Production (FR). United States.
    [Google Scholar]
  26. Koutsoukos, E.M. (2005) Stratigraphy: evolution of a concept. In: Applied Stratigraphy (Ed. by E.M.Koutsoukos ), Topics in Geobiology, Vol. 23, pp. 3–19. Springer, Amsterdam, The Netherlands.
    [Google Scholar]
  27. Krumbein, W.C., Sloss, L.L. & Dapples, E.C. (1949) Sedimentary tectonics and sedimentary environments. Am. Assoc. Pet. Geol. Bull., 33, 1859–1891.
    [Google Scholar]
  28. Lacaze, S., Pauget, F., Lopez, M. & Gay, A. (2011) Seismic Stratigraphic Interpretation from a Geological Model – a North Sea Case Study. 81st International Annual Meeting, Society of Exploration Geophysics (SEG), San Antonio.
    [Google Scholar]
  29. Leckie, D.A. & Boyd, R. (2003) Towards a Nonmarine Sequence Stratigraphic Model. Vol. 12, p. A101. American Association of Petroleum Geologists Annual Convention, AAPG, Salt Lake City, USA.
    [Google Scholar]
  30. Ligtenberg, H., de Bruin, G. & Hemstra, N. (2006) Sequence Stratigraphic Interpretation in the Wheeler Transformed (Flattened) Seismic Domain. 68th EAGE Conference & Exhibition. Vienna.
  31. Lomask, J. (2003) Flattening 3‐D Seismic Cubes without Picking. 73rd Annual International Meeting, Society of Exploration Geophysics (SEG), Dallas, TX.
    [Google Scholar]
  32. Lomask, J. & Guitton, A. (2007) Volumetric flattening: an interpretation tool. Lead. Edge, 26, 888–897.
    [Google Scholar]
  33. Lomask, J., Francis, J.M., Rickett, J., Buursink, M.L., Gerber, T.P., Perlmutter, M. & Paola, C. (2009) New tools for seismic stratigraphic interpretation: stratal convergence and instantaneous isochron attribute cubes derived from volumetric flattening of experimental strata. Am. Assoc. Pet. Geol. Bull., 93, 453–459.
    [Google Scholar]
  34. Miall, A.D. (2010) The Geology of Stratigraphic Sequences. p. 522. Springer Verlag, Heidelberg; New York.
    [Google Scholar]
  35. Nordlund, U. & Griffiths, C.M. (1992) An example of the practical use of chronosomes in quantitative stratigraphy. Geoinformatics, 4, 313–325.
    [Google Scholar]
  36. Nordlund, U. & Griffiths, C.M. (1993) Automatic construction of two‐ and three‐dimensional chronostratigraphic sections from digitized seismic data. Comput. Geosci., 19, 1185–1205.
    [Google Scholar]
  37. Overeem, I., Weltje, G.J., Bishop‐Kay, C. & Kroonenberg, S.B. (2001) The Late Cenozoic Eridanos delta system in the Southern North Sea Basin: a climate signal in sediment supply?Basin Res., 13, 293–312.
    [Google Scholar]
  38. Pauget, F., Lacaze, S. & Valding, T. (2009) A Global Interpretation Based on Cost Function Minimization. 79th Annual International Meeting, Society of Exploration Geophysicists (SEG), Houston, USA, 28, 2592–2596.
    [Google Scholar]
  39. Payton, C.E. (1977) Seismic Stratigraphy: Applications to Hydrocarbon Exploration. American Association of Petroleum Geologists, Memoir 26, Tulsa, OK.
    [Google Scholar]
  40. Posamentier, H.W. & Allen, G.P. (1999) Siliciclastic Sequence Stratigraphy: Concepts and Applications. SEPM, Tulsa, OK.
    [Google Scholar]
  41. Qayyum, F., de Groot, P.F.M. & Hemstra, N. (2012a) From 2d to 4d Wheeler Diagrams. Strata and Time ‐ Probing the gaps in our understanding (William Smith Meeting), The Geological Society. London, United Kingdom. AAPG Search and Discovery Article #50774 (2012).
  42. Qayyum, F., de Groot, P.F.M. & Hemstra, N. (2012b) Using 3D Wheeler diagrams in seismic interpretation – the Horizoncube method. First Break, 30, 103–109.
    [Google Scholar]
  43. Qayyum, F., de Groot, P.F.M., Hemstra, N. & Catuneanu, O., (2014) 4D Wheeler Diagrams – Concept and Applications, The Geological Society, Special Publication, Strata and Time, London, UK., doi: 10.1144/SP404.1
    [Google Scholar]
  44. Ramaekers, P. & Catuneanu, O. (2004) Development and Sequences of the Athabasca Basin, Early Proterozoic, Saskatchewan and Alberta, Canada. Elsevier Science Ltd., Amsterdam, The Netherlands.
    [Google Scholar]
  45. Rickett, J., Lomask, J. & Clark, J. (2008) Instantaneous Isochrons, Volume‐Flattening and a High Resolution View of Sedimentation Rate. 70th EAGE Conference & Exhibition, European Association of Geoscientists and Engineers (EAGE). Rome, Italy.
    [Google Scholar]
  46. Schenck, H.G. & Muller, S.W. (1941) Stratigraphic Terminology. Geol. Soc. Am. Bull., 52, 1419–1426.
    [Google Scholar]
  47. Schumm, S.A. (1993) River response to baselevel change: implications for sequence stratigraphy. J. Geol., 101, 279–294.
    [Google Scholar]
  48. Sloss, L.L. (1962) Stratigraphic models in exploration. J. Sediment. Res., 32, 415–422.
    [Google Scholar]
  49. Sloss, L.L. (1963) Sequences in the cratonic interior of North America. Geol. Soc. Am. Bull., 74, 93–114.
    [Google Scholar]
  50. Sloss, L.L., Krumbein, W.C. & Dapples, E.C. (1949) Integrated facies analysis. In: Sedimentary Facies in Geologic History, Memoir 39 (Ed. by C.R.Longwell ), Vol. 39. pp. 91–124. Geologic Society of America, Penrose Place, Boulder, CO.
    [Google Scholar]
  51. Stark, T.J. (2004) Relative geologic time (age) volumes—relating every seismic sample to a geologically reasonable horizon. Lead. Edge, 23, 928–932.
    [Google Scholar]
  52. Stark, T.J. (2005) Generation of a 3D Seismic “Wheeler Diagram” from a High Resolution Age Volume. 75th International Annual Meeting, Society of Exploration Geophysicists (SEG). Houston, TX.
    [Google Scholar]
  53. Stark, T.J. (2006) Visualization techniques for enhancing stratigraphic inferences from 3D seismic data volumes. First Break, 24, 75–85.
    [Google Scholar]
  54. Stark, T., Zeng, H. & Jackson, A. (2013) An introduction to this special section: chronostratigraphy. Lead. Edge, 32, 132–138.
    [Google Scholar]
  55. Twenhofel, W.H. (1939) Principles of Sedimentation. McGraw‐Hill, New York.
    [Google Scholar]
  56. Vail, P.R., Mitchum, R.M.J. & Thompson, S. (1977) Seismic stratigraphy and global changes of sea level, part 2. The depositional sequence as a basic unit for stratigraphic analysis. In: M26: Seismic Stratigraphy — Applications to Hydrocarbon Exploration (Ed. by C.E.Payton ), pp. 53–62. American Association of Petroleum Geologists, Tulsa, OK, USA.
    [Google Scholar]
  57. Wegener, A. (1912) Die entstehung der kontinente. Geol. Rundsch., 3, 276–292.
    [Google Scholar]
  58. Wheeler, H.E. (1958) Time‐stratigraphy. Am. Assoc. Pet. Geol. Bull., 42, 1047–1063.
    [Google Scholar]
  59. Wheeler, H.E. (1964) Baselevel, lithosphere surface, and time‐stratigraphy. Geol. Soc. Am. Bull., 75, 599–610.
    [Google Scholar]
  60. Wheeler, H.E., Maurice, B.E. (1948) Critique of the time‐stratigraphic concept. Geol. Soc. Am. Bull., 59, 75–86.
    [Google Scholar]
  61. Zecchin, M. & Catuneanu, O. (2013) High‐resolution sequence stratigraphy of clastic shelves i: units and bounding surfaces. Mar. Pet. Geol., 39, 1–25.
    [Google Scholar]
  62. Zeng, H., Backus, M.M., Barrow, K.T. & Tyler, N. (1998a) Stratal slicing, part I: realistic 3‐D seismic model. Geophysics, 63, 502–513.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12077
Loading
/content/journals/10.1111/bre.12077
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error