Seismic Velocity Monitoring Using Ambient Noise Observed by DONET Seismometers in the Nankai Trough, Japan

Toshinori KIMURA¹, Hitoshi MIKADA², Eiichiro ARAKI¹ and Yuya MACHIDA¹

¹Japan Agency for Marine-earth Science and Technology (JAMSTEC)
²Dept. of Civil and Earth Res. Eng., Kyoto University

Subduction zones, where a tectonic plate subducting beneath the other plate, megathrust or interplate earthquakes could be generated repeatedly. Because of the nature of interplate earthquakes, the process of plate subduction governs the distribution, mechanics, and style of slip along the interplate fault. At the Nankai Trough subduction zone, located beneath the Pacific Ocean off the southeast coast of Japan, we have installed a seismic observation system, named DONET (Dense Oceanfloor Network system for Earthquake and Tsunamis), which is composed of twenty seafloor broadband seismometers and a borehole vertical seismic array to monitor the seismic activity and the process of earthquake generation including the stress accumulation. To elucidate earthquake generation and preparation process, it is necessary to investigate how the stress could be accumulated not only in deeper part but also in the shallow sediments, what the role of interstitial fluid could be in the stress accumulation processes, etc. There are some conventional methods to measure these physical properties, such as borehole strainmeter, borehole breakouts or borehole dynamic tests. However, these methods have some difficulties from the viewpoints of technical and/or cost. For example, borehole breakouts and dynamic tests can be conducted only while drilling and/or immediately after that. Therefore we need to have some other methods to see the state and variation of the stress in the subseafloor. In this study, we applied seismic interferometry technique to ambient noise records observed by horizontal components of DONET KMD13 seafloor seismometer to obtain time dependent S-wave velocity and its anisotropy as a proxy of stress state below the DONET observatory. We first calculated cross-diploe 4-C pseudo shot records from every 1 hour ambient noise records observed by horizontal components of the DONET seismometer for three years. In obtained 4-C shot records, clear phases, which should be caused by S-wave anisotropy, are visible. Alford rotation method was then applied to the 4-C shot records to obtain S-wave anisotropy parameters, directions of fast S-wave and time lag between fast and slow S-wave velocities below the DONET observatory. We expected that our method could be a simple tool to monitor stress state in the Nankai Trough seismogenic zone.

1. INTRODUCTION

In the Nankai Trough subduction zone, Japan, Philippine-sea plate is subducting beneath the Eurasian plate with the rate of approximately 4.5 cm/year, and M 8.0 class huge mega-thrust earthquake occurred repeatedly with interval of 100 to 150 years (Seno, 1993). In this area, we are operating cabled seismic observation system, named DONET (Dense Oceanfloor Network systems for Earthquake and Tsunamis), which includes twenty three-components seismometers deployed on the seafloor (Kaneda et al., 2015; Kawaguchi et al., 2015) (Fig. 1). These seismometers were mainly distributed for passively monitoring natural earthquake related phenomena, e. g. regional microearthquakes, VLF (Very Low Frequency) events, seismic microtremors, etc. in the seismogenic zone.

For elucidating preparation and generation process of mega-thrust earthquake, which occurs repeatedly in subduction zones, it is important to observe and monitor the stress state, which is a key parameter governing its fault dynamics in the vicinity of seismogenic fault. In-situ stress analysis such as borehole breakout analysis may provide the orientation and the order of differential stress around the borehole, but it is still challenging to drill seismogenic fault, and is even more difficult to monitor temporal change of stress state, especially in wide area. Therefore, we have to consider another method to estimate stress state. In this study, we performed passive seismic data processing to obtain seismic anisotropy using dataset acquired by three-component seismometers installed in the
DONET observatories. Seismic anisotropy can be a proxy of stress state, and furthermore, its temporal change is expected to identify change of stress around the seismogenic fault.

2. METHOD

Seismic interferometry can retrieve the impulse response by the cross-correlation of seismic records simultaneously acquired by the two seismometers (Schuster, et al., 2004; Wapenaar and Fokkema, 2006). In this study, we applied seismic interferometry method to ambient noise records observed by horizontal components of DONET seismometers. KMD13 observatory is indicated by dashed rectangle.

To estimate anisotropy information from the obtained 4-C ACF and CCFs, we applied Alford rotation to the 4-C dataset. The Alford rotation is a widely used method to determine first and slow directions of S-wave anisotropy. The rotation can be performed as following equation (Alford, 1986).

\[
U = \begin{pmatrix}
\cos^2 \theta v_{11} + \sin^2 \theta v_{22} & (\cos^2 \theta v_{12} - \sin^2 \theta v_{21}) \\
+0.5\sin 2(\theta v_{21} + \theta v_{11}) & +0.5\sin 2(\theta v_{22} - \theta v_{11}) \\
(\cos^2 \theta v_{21} - \sin^2 \theta v_{12}) & (\cos^2 \theta v_{22} + \sin^2 \theta v_{12}) \\
+0.5\sin 2(\theta v_{22} - \theta v_{11}) & -0.5\sin 2(\theta v_{21} - \theta v_{11})
\end{pmatrix},
\]

where \(v_{ij}\) represents virtual shot records with \(i\)-direction source and \(j\)-direction receiver component. For example, \(v_{12}\) represents the virtual shot record with \(x\)-direction source and \(y\)-direction receiver obtained from cross-correlation between \(x\)- and \(y\)-component of the seismometer. We obtained ACF and CCFs calculated from each 1 hour dataset of continuous ambient noise records.

We can obtain counter clockwise rotated 4-C data from equation (2). If the rotated angle \(\theta\) is agreed with the direction of the S-wave anisotropy, the off-diagonal element of matrix (2) can be minimized. In practical, we calculated power of off-diagonal elements of the rotated 4-C matrix with the rotated angle changing and find the optimum value of the angle using time windows that include target reflection wave. The amplitude of the S-wave anisotropy can be calculated the time difference of the target reflection wave between \(v_{11}\) and \(v_{22}\).

3. DATA PROCESSING

We applied seismic interferometry method and Alford rotation to continuous ambient noise records observed by horizontal components of DONET seismometers. KMD13 observatory was first
chosen as a dataset for this study. Fig. 2 shows 4-C ACF and CCFs, which were calculated from ambient noise records obtained by DONET KMD13 seismometer form 1st Feb. 2013 to 30th Jan. 2016. In hourly 4-C records, coherent events are visible mainly in 1.0 to 5.0 s. A simple travel time calculation using the simple layered velocity model confirmed that these events should include S-wave, which are reflected from the seafloor and propagate in the shallow sediment layer.

We then applied Alford rotation to the obtained 4-C data to obtain S-wave anisotropy, azimuth and amplitude for each observatory. Simple layered models were assumed for the Alford rotation with layer stripping algorithm (Thomsen et al., 1999). In this study, S-wave velocity models were calculated from P-wave velocity model (Kamei et al., 2012) and Castagna equations (Castagna et al., 1985). Table 1 describes velocity parameters used for the KMD13 observatory.

Table 1 Velocity parameters for KMD13 observatory.

<table>
<thead>
<tr>
<th>Layer#</th>
<th>Vs m/s (m/s)</th>
<th>Twt (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>700</td>
<td>2.0</td>
</tr>
<tr>
<td>2</td>
<td>1800</td>
<td>4.5</td>
</tr>
<tr>
<td>3</td>
<td>1500</td>
<td>6.5</td>
</tr>
</tbody>
</table>

Fig. 3 shows time variation of S-wave anisotropy parameters in layer 2. The fast S-wave directions are almost parallel to subducting direction. Amplitudes of S-wave anisotropy are 4.5 %. Standard deviations of directions and amplitudes, which are calculated from 10 days dataset, are approximately less than 0.5 deg., and 0.3 %, respectively. These values imply resolutions of this approach used as a S-wave anisotropy monitoring tool. For layers 1 and 3, amplitude of S-wave anisotropy are quite small, less than 0.5 %, and therefore directions of fast S-wave cannot be determined. We now plans to perform a robust statistical method to improve signal to noise ratio.

4. CONCLUSION
We applied seismic interferometry method and Alford rotation to ambient noise records observed by DONET seafloor seismometer deployed in the Nankai Trough, Japan. Then depth-dependent S-wave anisotropy with time variation was obtained below the DONET KMD13 observatory. Although further analysis and discussions, such as quantitative discussion of the relationship between S-wave anisotropy and stress, are still needed, we expected that our method can be a simple tool to monitor stress state in the Nankai Trough seismogenic zone.

REFERENCES
10) Thomsen, L., Tsvankin, I., and Mueller, M. C., 1999, Coarse-layer stripping of vertically variable azimuthal anisotropy from shear-wave data, Geophysics, 64, 1126-1138.