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ABSTRACT
Complex resistivity imaging provides information on the subsurface distribution of the electrical 
conduction and polarisation properties. Spectral induced polarisation (SIP) refers to the frequency 
dependence of these complex resistivity values. Measured SIP signatures are commonly analysed 
by performing a Cole–Cole model fit or a Debye decomposition, yielding in particular chargeabil-
ity and relaxation time values. Given the close relation of these parameters with petrophysical 
properties of relevance in various hydrogeological and environmental applications, it is crucial to 
understand how well they can be reconstructed from multi-frequency complex resistivity imaging 
with subsequent Cole–Cole or Debye decomposition analysis. In this work, we investigate, in a 
series of numerical simulations, the reconstruction behaviour of the main spectral induced polarisa-
tion parameters across a two-dimensional complex resistivity imaging plane by considering a local 
anomalous polarisable body at different depths. The different anomaly positions correspond to dif-
ferent cumulated sensitivity (coverage) values, which we find to be a simple and computationally 
inexpensive proxy for resolution. Our results show that, for single-frequency measurements, the 
reconstruction quality of resistivity and phase decreases strongly with decreasing cumulated sensi-
tivity. A similar behaviour is found for the recovery of Cole–Cole and Debye decomposition charge-
abilities from multi-frequency imaging results, while the reconstruction of the Cole–Cole exponent 
shows non-uniform dependence over the examined sensitivity range. In contrast, the Cole–Cole and 
Debye decomposition relaxation times are relatively well recovered over a broad sensitivity range. 
Our results suggest that a quantitative interpretation of petrophysical properties derived from Cole–
Cole or Debye decomposition relaxation times is possible in an imaging framework, while any 
parameter estimate derived from Cole–Cole or Debye decomposition chargeabilities must be used 
with caution. These findings are of great importance for a successful quantitative application of 
spectral induced polarisation imaging for improved subsurface characterisation, which is of  interest 
particularly in the fields of hydrogeophysics and biogeophysics.

Lesmes and Morgan 2001; Nordsiek and Weller 2008; Florsch, 
Revil and Camerlynck 2014; Weigand and Kemna 2016b).

While initially the IP method has been mainly used for the 
prospection of ore deposits (e.g., Pelton et al. 1978), over the last 
15 years, the potential of CR imaging has also been demon-
strated for various hydrogeological and environmental applica-
tions, including lithological discrimination (e.g., Kemna, Binley 
and Slater 2004; Mwakanyamale et al. 2012), mapping and 
quantification of hydraulic conductivity (e.g., Kemna et al. 2004; 
Hördt et al. 2007), monitoring the integrity and performance of 
reactive barriers (Slater and Binley 2006), mapping and charac-
terisation of contaminant plumes (e.g., Kemna et al. 2004; Flores 
Orozco et al. 2012a), monitoring of sulphide mineral precipita-
tion (e.g., Williams et al. 2009; Flores Orozco, Williams and 
Kemna 2013), and monitoring of micro-particle injection and 

INTRODUCTION
The induced polarisation (IP) method yields images of the com-
plex resistivity (CR) of the subsurface, which provides informa-
tion on the conduction and polarisation properties of the meas-
ured soils or rocks. The measurements can be performed at dif-
ferent frequencies (typically below 10 kHz), in the so-called 
spectral IP (SIP) method, to obtain information on the frequency 
dependence of the CR.

Due to its simplicity, the Cole–Cole (CC) model is widely used 
to describe the SIP response (e.g., Pelton et al. 1978; Luo and 
Zhang 1998). Yet, in recent years, the Debye decomposition (DD) 
approach has been promoted as a robust and flexible alternative to 
the CC model in (near-surface) geophysical applications (e.g., 
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ed out for conventional resistivity imaging, it has not yet been 
addressed for single- or multi-frequency (spectral) IP imaging. 
The assessment of correlation loss is critical for the desired 
application of petrophysical models established on the basis of 
laboratory studies to imaging results obtained in the field.

We here investigate, by means of numerical simulations, the 
reconstruction quality of CC model and DD parameters recov-
ered from multi-frequency CR images. We consider a standard 
dipole–dipole surface survey over a homogeneous, non-polarisa-
ble half-space containing a 2D polarisable anomaly, whose verti-
cal position is systematically varied to investigate its reconstruc-
tion in areas with different sensitivity levels in the inversion. 
Hereafter, we refer to reconstruction quality as the deviation of 
the recovered model parameters from their original values. We 
analyse and compare the reconstruction quality of single- and 
multi-frequency (spectral) IP parameters as a function of cumu-
lated sensitivity. We also investigate the impact of data noise on 
the reconstruction quality, considering that data quantification is 
critical for quantitative IP imaging applications (e.g., Flores 
Orozco, Kemna and Zimmermann 2012b; Kemna et al. 2012).

METHODS
Forward modelling and inversion
Synthetic data, i.e., complex transfer impedances, are computed 
using the 2.5D finite-element modelling code CRMod (Kemna 
2000). CRMod solves the underlying 2.5D forward problem 
(Helmholtz equation) for a given 2D CR distribution. For details 
of the implementation, we refer to Kemna (2000). Data noise is 
added from a normally distributed ensemble of random numbers. 
To provide comparable results, all simulations are conducted 
using the same ensemble of random numbers, scaled by previ-
ously chosen standard deviations.

The noise-contaminated data are inverted using CRTomo 
(Kemna 2000), which is a smoothness-constraint, Gauss–

propagation (Flores Orozco et al. 2015). These field-scale appli-
cations have also prompted the development of models describ-
ing the link between the CR response and lithologic, textural, 
hydraulic, or geochemical soil/rock properties (see, e.g., Slater 
(2007), Kemna et al. (2012) and the references therein). The 
potential of the SIP method has also been demonstrated for 
applications in the emerging field of biogeophysics (e.g., 
Atekwana and Slater 2009). Examples of such applications 
include the detection of alterations at mineral–fluid interfaces 
due to microbial growth (e.g., Abdel Aal et al. 2004) or biostim-
ulated mineral precipitation (e.g., Williams et al. 2009; Flores 
Orozco et al. 2011), detection of biofilm formation (e.g., 
Ntarlagiannis et al. 2005; Davis et al. 2006), and characterisation 
of tree roots (e.g., Zanetti et al. 2011) or crop roots (Weigand and 
Kemna 2016a). The variety of these studies demonstrates the 
growing interest in the application of CR (or SIP) imaging.

It is well known that electrical images are characterised by a 
spatially variable image resolution (e.g., Oldenburg and Li 1999; 
Friedel 2003; Binley and Kemna 2005), which needs to be taken 
into account in the interpretation of the resulting images. Day-
Lewis, Singha and Binley (2005) found a spatially variable 
reconstruction quality of water content determined from electri-
cal resistivity measurements, with an increasing inaccuracy of 
the inferred water content estimates with decreasing image reso-
lution. This resolution-related phenomenon was referred to by 
the authors as “correlation loss”, as it can be considered as loss 
of information in the resistivity images due to poor resolution. 
Kemna (2000) demonstrated that the analysis of the cumulated 
sensitivity can provide insights into the variable image resolu-
tion. Nguyen et al. (2009) found, for regions with cumulated 
sensitivity below some threshold value, an increase in the corre-
lation loss for the mass fraction between fresh water and seawa-
ter reconstructed from electrical resistivity imaging results. 
However, even if the problem of correlation loss has been point-

Figure  1 (a) Finite-element grid 

used for the forward modelling. 

(b) Distribution of percentage 

errors of modelled impedance 

magnitude values (ΔΖmod) for all 

used measurement configura-

tions, determined for a homoge-

neous resistivity model (half-

space).
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whereas τ values may span several orders of magnitude (e.g., 
Pelton et al. 1978; Vanhala 1997; Luo and Zhang 1998).

Debye decomposition
The DD scheme describes the CR spectrum using a superposi-
tion of a large number of Debye polarisation terms (e.g., 
Nordsiek and Weller 2008):

� (2)

where N is the number of relaxation times (i.e., Debye polarisa-
tion terms) used for the superposition, m

k
 is the kth chargeability 

corresponding to the kth relaxation time τ
k
, and ρ0,DD is the DC 

resistivity (as obtained from the DD). The relaxation times are 
chosen to cover the frequency range spanned by the data accord-
ing to the inverse relationship τ = 1/ωmax, ρ'' (e.g., Weigand and 
Kemna 2016b). For each frequency decade, 20 relaxation times 
are used, and the relaxation time range is extended by two orders 
of magnitude at each end of the covered frequency range, as sug-
gested by Weigand and Kemna (2016b,c).

The resulting distribution of relaxation times mk(τk) is called 
the relaxation time distribution, from which parameters similar 
to the CC parameters are derived:

• � The total chargeability, , provides an analog to the  
 
CC chargeability m. However, mtot only accounts for polarisa-
tion contributions within the data frequency range due to the 
much narrower spectral shape of the Debye response com-
pared with typical CC responses (with c < 1).

• � The mean logarithmic relaxation time, τmean, denotes the 
chargeability-weighted logarithmic mean value of the DD 
relaxation times (Nordsiek and Weller 2008):

	             
	

DESIGN OF NUMERICAL EXPERIMENTS
The numerical experiments are conducted on a model domain of 
80 m × 17 m (as depicted in Figure 1a), with the underlying finite-
element mesh consisting of 3128 rectangular cells, each composed 
of four triangular elements. Forty electrodes are located at the 
surface with an equidistant spacing of 1 m. Only the quadratic 
finite-element cells below the electrodes are used for the analysis, 
and they are equally sized with an edge length of 0.5 m. To 
increase modelling accuracy, additional elements with an expo-
nentially increasing width are used at both sides of the grid. 
Simulations are performed using a dipole–dipole measurement 
scheme composed of skip-0,1,2,3 configurations, resulting in 1944 
measurements. The “skip-number” refers to the dipole length, 
indicating the number of electrodes “skipped” between the two 
current electrodes and the two voltage electrodes, respectively.  

Newton-type inversion scheme. The data are weighted in the 
inversion by individual errors (see Appendix A).

Image appraisal is done using the L
1- and L2-normed cumu-

lated sensitivity (coverage) and the diagonal entries of the model 
resolution matrix (see Appendix B). Throughout this study, nor-
malised cumulative, error-weighted sensitivities (hereafter sim-
ply referred to as sensitivity) are presented, as they offer better 
comparability.

Cole–Cole model
The frequency-dependent electrical properties of soils and rocks 
are often described by the empirical CC model (e.g., Cole and 
Cole 1941). In terms of CR, ρ(ω), with angular frequency ω, the 
CC model can be expressed after Pelton et al. (1978) as

� (1)

where ρ0 is the DC resistivity (low-frequency asymptote), m is 
the CC chargeability, τ is the CC relaxation time, c is the CC 
exponent, and j is the imaginary unit. Parameter ρ0 defines the 
amplitude of the magnitude spectrum (|(ρ(ω)|), whereas param-
eter m determines the amplitude of the phase spectrum (φ(ω)). 
Parameter c describes the asymptotic slope of the symmetric 
phase spectrum (in log–log representation), i.e., the degree of 
frequency dispersion, and parameter τ is inversely related to the 
peak frequency of the imaginary part of the resistivity, i.e.,  
ωmax, ρ'', by ωmax, ρ'' = 1/τ. The values of m and c range from 0 to 1, 

Figure  2 (a) Model used for the numerical simulations and (b) corre-

sponding (L2-normed) cumulated sensitivity distribution (normalised to 

1). The model consists of a homogeneous half-space (|ρ| = 100 Ωm,  

φ = 0 mrad) with an embedded polarisable anomaly (indicated by the 

black rectangle), the depth position of which is varied in the simulations. 

The positions of the surface electrodes are indicated by black dots. Outer 

elements of the modelling grid are not shown (cf. Figure 1a).
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the polarisable anomaly. However, the diagonal entries of the 
model resolution matrix, i.e.,  (see Appendix B), are computed 
after the final iteration of the inversion process. As the final values 
of the regularisation parameter λ differ for the different anomaly 
locations, so do the computed diagonal entries of  vary on this 
account (cf. equation (10)). Although this makes a quantitative 
comparison for the different anomaly locations difficult, the diago-
nal entries of  are presented in the following sections to show 
their general behaviour in comparison with cumulated sensitivity. 

Single-frequency reconstruction
In a first step, we investigate the reconstruction quality of resis-
tivity magnitude and phase values in the region of the anomaly, 
i.e., the deviation between original and recovered values, for a 
single-frequency data set. In the single-frequency studies, we 
investigate three scenarios: (i) 10 Ωm, –30 mrad (conductive, 
polarisable anomaly); (ii) 100 Ωm, –30 mrad (polarisable anom-
aly); and (iii) 1000 Ωm, –30 mrad (resistive, polarisable anoma-
ly). Figure 3 shows exemplary inversion results for the second 
scenario for two depths of the anomaly.

A small, stabilising noise component of 0.1% Gaussian noise 
is added to the impedance magnitude data, and Gaussian noise 
with a standard deviation of 0.5 mrad is added to the impedance 
phase data. The error estimate in the inversion assumes 3% rela-
tive and 0.001 Ω absolute error for the impedance magnitude 
(resistance) and 1% relative and 0.5-mrad absolute error for the 
impedance phase.

The inverted resistivity magnitude and phase values of the 
anomaly pixels (i.e., model cells within the anomaly region) are 
averaged (arithmetic mean of log magnitude and phase, respec-
tively), and the deviations from the original values are calculated 
as a measure of reconstruction quality. These deviations are 
analysed against the averaged (arithmetic mean of log values) 
cumulative sensitivity values (s

L1 and sL2), as well as against the 
diagonal entries of the model resolution matrix (diag( )), for the 
different anomaly locations.

Multi-frequency reconstruction
The next step in our study is to examine the reconstruction quality 
of the CC model parameters inferred from multi-frequency imag-
ing results. The original CC parameters of the anomaly are chosen 

For instance, the skip-0 configuration uses adjacent electrodes for 
current injection and voltage measurement. Resistance (imped-
ance magnitude) modelling errors for a homogeneous half-space 
lie below 2% for all measurement configurations (Figure 1b).

The surface electrode configuration used in this study exhibits 
a cumulative sensitivity distribution that decreases monotonically 
with depth (Figure  2b). Thus, an anomaly placed at different 
depths in the subsurface (Figure 2a) is associated with different 
cumulative sensitivity levels. The CR model used to compute syn-
thetic data is defined as a homogeneous background  
(|ρ| = 100 Ωm, φ = 0 mrad) containing an anomalous body (4 × 4 
model cells, corresponding to a size of 2 m × 2 m) with varying 
resistivity magnitude and phase values. Since the spatial extension 
of the anomaly is relatively small (given the modelling domain and 
the used measurement configurations) and since anomalous resis-
tivity magnitude values were only varied within one order of 
magnitude relative to the background value, the current density 
(and sensitivity) distributions do not differ significantly from the 
distribution for a homogeneous model. Therefore, we use the sen-
sitivity values of the homogeneous model in the analysis of the 
reconstruction quality of the CC parameters for models containing 

Figure 3 Resistivity phase imaging results for the model shown in Figure 

2a for two different depths of the polarisable (–30 mrad) anomaly. The 

position of the anomaly is marked by the black rectangle.

Figure  4 (a) CR magnitude and 

(b) phase CC model response of 

the polarisable anomaly simulat-

ed in this study (for CC parame-

ters: ρ0 = 100 Ωm, m = 0.1,  

τ = 0.049 s, c = 0.8). The dots 

indicate the considered measure-

ment frequencies.
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deviation of the recovered parameters from the original CC param-
eters, representing a measure of reconstruction quality:

� (3)

� (4)

� (5)

� (6)

� (7)

with the subscript “orig” denoting the original CC parameters 
used to generate the CR response in the forward model. The 

as ρ0 = 100 Ωm, m = 0.1, τ = 0.049 s , and c = 0.8, so that the peak 
of the phase response occurs in the center of the considered fre-
quency range (at approximately 3 Hz). Based on these parameters, 
impedance measurements at 29 frequencies between 10-3 Hz and 
104 Hz (equally spaced on a logarithmic scale) are numerically 
computed, as illustrated in Figure 4. The model background is set 
to 100 Ωm and 0 mrad for all frequencies. CR models are created 
for each of the 29 frequencies and used to model synthetic data-
sets, which are then independently inverted. Following this, a CC 
model is fitted to the CR spectra extracted from the multi-frequen-
cy images for each of the anomaly pixels (hereafter referred to as 
intrinsic spectra). Likewise, the DD is applied to the obtained 
intrinsic spectra. In the final step, the arithmetic mean values of the 
resultant spectral model parameters (log(ρ0), m, log(τ), mtot, 
log(τmean) are computed. Thus, for each vertical anomaly position, 
one set of averaged spectral model parameters is obtained.

To assess the reconstruction quality, the deviations between the 
recovered and original values are analysed against the sL1, sL2, and 
diag( ) values, averaged (arithmetic mean of log values) over the 
anomaly pixels. The following parameters denote the percentage 

Figure  5 Deviation between 

recovered and original resistivity 

(a, b, and c) magnitude and (d, e, 

and f) phase values in the anomaly 

region. Results are presented for 

different depth positions of the 

anomaly (indicated by the markers 

along each curve), plotted as a 

function of L1 cumulated sensitiv-

ity (sL1), L2 cumulated sensitivity 

(sL2), and resolution (i.e., diagonal 

entry of the model resolution 

matrix) in the anomaly region. 

Results are shown for three sce-

narios: (a and d) a conductive, 

polarisable anomaly (model val-

ues 10 Ωm, –30 mrad); (b and e) a 

solely polarisable anomaly (model 

values 100 Ω, –30 mrad) (cf. 

Figure 3); and (c and f) a resistive, 

polarisable anomaly (model val-

ues 1000 Ωm, –30 mrad), each 

embedded in a homogeneous 

background (model values  

100 Ωm, 0 mrad). The recon-

structed values are extracted from 

the corresponding (single-fre-

quency) CR imaging results and 

averaged over the 16 model cells 

that comprise the anomaly. A 

phase noise level of 0.5 mrad is 

assumed in the inversion.
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equal to the actual noise level in the phase data are assumed 
in the inversion, thus adequately accounting for the added  
noise. In subsequent inversions, the actual phase noise level is 
deliberately underestimated by up to one order of magnitude  
to investigate the effect of overfitting on the reconstruction  
quality.

In a final numerical simulation, we investigate the quality of 
reconstructed τ and τmean values for different degrees of frequen-
cy dispersion (i.e., different c values) and different spectral posi-
tions of the phase peak (i.e., different τ values) in the original CC 
model response of the anomaly.

other parameters are recovered from the CC fit and the DD of the 
imaging results.

A stabilising noise component of 0.1% Gaussian noise is 
added to the impedance magnitude data, and an impedance  
magnitude (resistance) error estimate comprising 3% relative 
error and 0.001 Ω absolute error is used in the inversions to 
account for numerical errors in the forward solution.  
Gaussian noise of different levels (0.05, 0.1, and 0.5 mrad) is 
added to the impedance phase datasets to investigate the effects 
of data noise and error estimation on the reconstruction of  
the CC and DD parameters. Here, at first, phase error estimates 

Figure 6 Recovered phase values 

for all 16 elements (black lines), 

the corresponding original spec-

tral response (blue curve), and the 

response of the fitted CC model 

(red curve) in the anomaly region 

for (a) a 2-m depth and (b) a 5-m 

depth of the anomaly (referring to 

the top boundary of the anomaly) 

(cf. Figure 3).

Figure 7 Reconstruction quality 

parameters for the recovered CC 

and DD parameters of the anom-

aly pixels plotted against decreas-

ing sensitivity values (L2), i.e., 

increasing depth locations of the 

anomaly. (a) ηm, (b) ηmtot, (c) ητ, 

(d) ητ,mean, (e) ηc. Simulations 

were performed for a phase data 

noise level of 0.05, 0.1, and  

0.5 mrad, respectively. The phase 

error estimate in the inversions 

was chosen accordingly.
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tive behaviour with respect to sensitivity (for both L1 and L2 
curves) and resolution (diag( )), demonstrating that (cumulated) 
sensitivity is an adequate proxy to evaluate image resolution.

Multi-frequency results
Figure  6 shows the recovered spectral phase response for the 
anomaly located at 2- and 5-m depths, respectively, and thus 
associated with different sensitivity (resolution) levels. Both 
reconstructed spectra exhibit an underestimation of the absolute 
phase values in comparison with the original values. This under-
estimation is larger for the deeper anomaly position (Figure 6b) 
associated with lower sensitivity. An additional effect caused by 
the underestimated phase values is the change in the slope of the 
recovered phase spectrum for different depth positions, which 
affects the fitting of the CC exponent c (describing the degree of 
dispersion). This spectral distortion effect is more pronounced 
for the deeper anomaly position (Figure  6b), associated with 
regions of lower sensitivity. Intrinsic spectra recovered for the 
shallower anomaly position exhibit a larger spread within the 
anomaly (Figure 6a, black curves), indicating a stronger varia-
tion of the sensitivities in the anomaly region.

Reconstruction quality of m decreases with decreasing sensi-
tivity (Figure  7a), similar to the behaviour observed for the 

RESULTS
Single-frequency results
The reconstruction quality of resistivity magnitude decreases 
with decreasing sensitivity for anomalies with a contrasting mag-
nitude value, compared with the background magnitude 
(Figure  5a,c). The contrast between anomaly and background 
values, i.e., whether the anomaly is conductive or resistive, deter-
mines the sign of the deviation, for over- or underestimated val-
ues. If no contrast is present in the magnitude, reconstruction 
quality is independent of sensitivity (Figure  5b). The phase 
reconstruction curves do not show such dependence on the mag-
nitude contrast (Figure  5d–f). The three cases, referring to the 
same value of the phase anomaly (φ = −30 mrad), reveal a mono-
tonic decrease in reconstruction quality with decreasing sensitiv-
ity (sL1, sL2) and resolution (diag( )) values. Reconstruction 
quality curves in Figure 5 also reveal a slightly different behav-
iour depending on whether the anomaly is conductive or resis-
tive. In particular, for the same depth position of the anomaly, a 
smaller deviation of the reconstructed phase values is observed 
in case of a conductive anomaly (Figure 5d) in comparison to a 
resistive anomaly (Figure 5f). This indicates an improved phase 
reconstruction capability in conductive regions, where current 
flow is focused. Furthermore, Figure 5 reveals a similar qualita-

Figure 8 Reconstruction quality 

parameters for the recovered CC 

and DD parameters of the anom-

aly pixels plotted against decreas-

ing sensitivity values (L2), i.e., 

increasing depth locations of the 

anomaly. (a) ηm, (b) ηmtot, (c) ητ, 

(d) ητ,mean, (e) ηc. Results are 

averaged over the 16 pixels of the 

anomaly. Simulations were per-

formed for a phase data noise 

level of 0.5 mrad and two differ-

ent phase error estimates used in 

the inversions, corresponding to 

an underestimation of noise 

(0.05-mrad error) and the correct 

estimation of noise (0.5-mrad 

error).
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erratic behaviour for low sensitivity values below 10-4 (normal-
ised L2 value), showing variations up to 20% (Figure 7c,d).

If the level of phase data noise is underestimated in the inver-
sion, m and mtot reconstruction curves are shifted to smaller 
sensitivities, that is, for the same sensitivity (depth), the recov-
ered contrast is slightly increased when noise is underestimated 
(on the account of overfitting the data) (Figure 8a,b). The recon-
struction curves of τ and τmean become more erratic for increasing 
underestimation of the data noise level (Figure 8c,d), and also, c 
reconstruction quality decreases (Figure  8e), especially at low 
sensitivities. However, reconstructed relaxation time values stay 
within 60% of the original τ value for a ten-fold underestimation 
of the actual phase data noise level in the inversion.

The reconstruction quality of CC relaxation time τ decreases 
for decreasing c values, i.e., decreasing frequency dependence in 
the spectrum (Figure  9a,c). The corresponding recovered DD 
relaxation times τmean, however, stay within 16% of the original τ 

reconstruction of the (single-frequency) phase value (cf. 
Figure 5). The reconstruction curves for m also reveal a depend-
ence relation on the level of noise in the phase data, with larger 
deviations between recovered and original values for higher 
noise levels and, thus, lower contrast in the inversion results. The 
DD parameter mtot (Figure 7b) shows a reconstruction behaviour 
similar to that of m (Figure 7a).

The reconstruction quality of c shows a dependence relation 
on sensitivity, but not a monotonic one (Figure 7e). While m and 
mtot are underestimated over the whole sensitivity range 
(Figure 7a,b), c reconstruction varies widely and shows smaller 
deviations for more noisy data and, thus, a lower degree of fitting 
(Figure 7e).

The reconstruction quality of τ and τmean differs significantly 
from that for m, mtot, and c, as the reconstruction quality curves 
of the relaxation times show no systematic dependence on sensi-
tivity. However, small noise levels of 0.05 mrad lead to some 

Figure  9 (a) CC model phase 

responses for different values of c 

(c = 0.1: blue, c = 0.2: green,  

c = 0.8: red) with τ = 0.049 s,  

ρ0 = 100 Ωm, and m = 0.1. (b) CC 

model phase responses for differ-

ent values of τ (τ = 5 s: red,  

τ = 0.049 s: green, τ = 5 · 10-4 s: 

blue) with c = 0.8, ρ0 = 100 Ωm, 

and m = 0.1. (c–f) Reconstruction 

quality parameters for the recov-

ered CC and DD relaxation time 

parameters of the anomaly pixels 

for different original CC parame-

ter values of c and τ, respectively, 

plotted against decreasing sensi-

tivity values (L2), i.e., increasing 

depth locations of the anomaly. (c 

and d) ητ; (e and f) ητ,mean.
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be better reconstructed than smaller (absolute) phase values at 
the spectral edges of the CC model response (Figure  6). We 
explain the behaviour observed in Figure 7e as follows: In high-
sensitivity regions, the loss of reconstruction quality for the edge 
values dominates over the loss of reconstruction quality for the 
peak values (see changing slope of the curve in Figure  5e), 
resulting in steeper slopes of the recovered spectral response and, 
thus, an overestimation of c. With decreasing sensitivity, at some 
point, the loss of reconstruction quality for the peak values will 
lead to a flattened spectral response with c values smaller than 
the original ones. This behaviour can be expected, with certain 
variations due to changing SNR values, for different anomaly 
parameterisations, phase error estimations, and noise levels. 
However, as observed in Figure 8e, an underestimation of data 
noise level leads to an unpredictable reconstruction behaviour of 
c, possibly due to stronger influence of noise components in 
inversion. This, in turn, has a direct influence on the slope of the 
intrinsic spectra and, correspondingly, on parameter c. The 
reconstruction of the c parameter, and to a certain extent the 
chargeabilities m and m

tot, can possibly be improved by using a 
frequency regularisation scheme in the inversion (e.g., Kemna et 
al. 2014; Günther and Martin 2016): If a smoothness of suitable 
strength is imposed on the spectrum, then its original form can 
be retained over a larger SNR bandwidth, i.e., down to larger 
depths.

The reconstruction quality of the CC relaxation time τ and the 
DD relaxation time τmean differ significantly from the results for 
ρ0, m, mtot, and c, revealing a stable, i.e., sensitivity-independent, 
reconstruction quality over a large range of sensitivity values. 
This can be explained by the direct relation of τ to the frequency 
position of the phase peak, which is more robust to data noise, 
error underestimation, and small sensitivities than the other fea-
tures of the spectral CR response used to determine ρ0, m, mtot, 
and c. The relaxation time is (inversely) proportional to the peak 
frequency, i.e., the frequency at which the strongest polarisation 
response is observed (e.g., Pelton et al. 1978). Hence, this 
parameter is only dependent on the position of the peak in the 
spectrum, but not on the resistivity or phase values. Therefore, 
under/overfitting in the inversion should not impact the recon-
struction quality of τ and τmean, as long as the peak in the spec-
trum is not strongly distorted (cf. Figure  6). Furthermore, the 
interpretation of τ and τmean results will not be influenced (to a 
certain degree) by the varying image resolution or different noise 
levels, as would be the other parameters (cf. Figure  7). This 
result is extremely important for SIP imaging applications as it 
implies that the recovered relaxation time values will be less 
dependent on the electrode configuration of the survey and of 
similar quality over a large sensitivity (and thus image) region. 
Merely the underestimation of data noise has a larger effect on 
recovered relaxation times (Figure 8c,d). However, the observed 
60% deviation is still relatively small compared with the overall 
dynamics of multiple magnitudes that can be observed for 
relaxation times (e.g., Pelton et al. 1978).

values (Figure 9e). For different positions of the phase peak, i.e., 
different original τ values (Figure 9b), the reconstruction quality 
of CC relaxation time does vary only within 14% (Figure 9d). 
The corresponding DD relaxation times τmean show deviations 
from the original τ values that increase enormously at lower 
sensitivities (Figure 9f), which is an effect of the strong depend-
ence of the DD results on the position of the spectral response in 
the analysed frequency range (Weigand and Kemna 2016b).

DISCUSSION
Reconstruction quality of resistivity and polarisation 
parameters
To understand the reconstruction behaviour of SIP parameters, it 
is important to also understand the reconstruction quality of the 
single-frequency magnitude and phase values. Pelton et al. 
(1978) already noted that parameter m is primarily sensitive to 
phase angle φ, and thus, it is not surprising that the reconstruc-
tion curves (i.e., the reconstruction quality as a function of cumu-
lated sensitivity) of m and φ are similar in shape (cf. Figures 5e 
and 7a,b). We explain the loss of reconstruction quality of φ (as 
well as of m and mtot) with the (non-linearly) decreasing signal-
to-noise ratio (SNR) with deeper anomaly position (cf. 
Figure 2b). This effect is well known for DC resistivity imaging. 
Although the loss of sensitivity and resolution with depth is 
inherent to the method and thus inevitable, a careful design of the 
electrode layout and measurement configurations may help miti-
gate this effect. This also holds for cross-borehole imaging appli-
cations, where the loss of sensitivity/resolution is related to the 
distance to the boreholes. Another factor contributing to the SNR 
is the given phase contrast of the anomaly relative to the back-
ground. An anomaly with a large phase contrast will be better 
resolved than one with only a weak contrast.

As observed in Figures 7 and 8, data error quantification and 
its adequate consideration in the inversion play a significant role 
in the quantitative imaging of CC parameters. The addition of 
noise to the phase data, or the inversion of the data to an inade-
quate noise level, affects the reconstruction curve for φ (as well 
as for m and mtot). We explain this as the result of over/underfit-
ting the data in the inversion. While underfitting the data can 
produce larger contrasts in the inversion results (Figure 8a,b), it 
also introduces artefacts in the images and amplifies noise com-
ponents. This comes into effect for the reconstruction of relaxa-
tion times (Figure 8c,d).

Reconstruction quality of spectral parameters
Regarding the shape of the spectral response, the c reconstruc-
tion curve can be divided into two parts: For high sensitivities, 
the c values are correctly estimated (or slightly overestimated), 
and below a certain sensitivity threshold value, they are underes-
timated (Figure 7e). To understand this pattern, it is necessary to 
consider the reconstructed phase values in the different regions 
of the spectrum. As previously discussed, due to variations in the 
SNR, large (absolute) phase values that form the phase peak will 
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with respect to different noise levels in the data; however, it is 
important that the considered frequency range is wide enough 
to capture the spectral behaviour. Hence, we also conclude that 
the quality of the reconstruction will benefit from the acquisi-
tion of broadband CR measurements, preferably with dense 
spectral sampling.

Application to more complex scenarios
In this study, we consider a simple model of a polarisable 
anomaly with a CC model response in a homogeneous, unpo-
larisable background. This setting is transferable to only a 
limited number of real-life scenarios. For example, certain 
tracer tests could provide a situation in which the results of this 
study can be directly applied. In general, the subsurface will 
exhibit a more complex, heterogeneous structure, and other 
aspects, such as shielding effects of high-resistive layers, will 
become important. Furthermore, with increasing inhomogene-
ity of a given subsurface resistivity distribution, regularisation 
effects will influence inversion results to a much larger degree. 
Analysing such scenarios would greatly overreach this study 
and is left for future studies. However, as a preview on possible 
research directions, Figure 10 shows the reconstruction curves 

Quantitative imaging of CC parameters may play a signifi-
cant role in the characterisation of processes relevant in hydro-
geological and environmental studies. However, petrophysical 
relationships are still required to derive information of interest 
from CC/DD parameters. For instance, recent studies have 
demonstrated a strong correlation between hydraulic conduc-
tivity (or permeability), governing groundwater flow, and the 
length scale at which the polarisation takes place, i.e., a char-
acteristic relaxation time τ (e.g., Binley et al. 2005; Revil and 
Florsch 2010; Zisser, Kemna and Nover 2010). However, sev-
eral works have also investigated the link between a single-
frequency CR parameter and important textural properties, 
such as surface-area-to-pore-volume ratio (e.g., Börner, 
Schopper and Weller 1996; Slater and Lesmes 2002; Weller et 
al. 2010), which could also be used to estimate hydraulic con-
ductivity. While both single-frequency and multi-frequency CR 
imaging may thus be used to estimate the same parameter (e.g., 
hydraulic conductivity), the results presented in our study sug-
gest that, for imaging surveys, petrophysical relationships rely-
ing on relaxation times (τ, τmean) are better suited than those 
based on m, mtot, or φ, given the better reconstruction quality of 
τ. We have shown that the τ reconstruction quality is robust 

Figure 10 Reconstruction quality 

parameters for the recovered CC 

and DD parameters of the anom-

aly pixels plotted against decreas-

ing sensitivity values (L2), i.e., 

increasing depth locations of the 

anomaly. (a) ηm, (b) ηmtot, (c) ητ, 

(d) ητ,mean, (e) ηc. Results for a 

block anomaly (block; cf. Figure 

8) and a layered anomaly (layer) 

are compared. Simulations were 

performed for a phase data noise 

level of 0.5 mrad and a corre-

sponding error estimate in the 

inversion.
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relationships, is also possible in a multi-frequency CR imaging 
framework. The recovery of chargeabilities m or mtot, as well as 
the CC exponent c, on the other hand, is highly affected by the 
imaging characteristics (sensitivity, resolution), which must be 
carefully taken into account if a quantitative interpretation is 
intended. Given the strong correlation between CC model 
parameters (and corresponding DD parameters) and various 
petrophysical properties of relevance in hydrogeological and 
environmental applications, as demonstrated by a large number 
of studies over the last years, our findings are of outermost 
importance for the successful quantitative application of multi-
frequency CR imaging for improved subsurface characterisation.
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APPENDIX
A. Complex resistivity inversion
CR images are computed using the inversion code of Kemna 
(2000). The code computes the distribution of CR ρ (expressed 
in magnitude (|ρ|) and phase (φ)), in a 2D (x, z) image plane from 
a given dataset of complex transfer impedances Z

i
 (expressed in 

magnitude (|Z
i
|) and phase (φ

i
)) under the constraint of maximum 

smoothness. The algorithm iteratively minimises a cost function 
Ψ(m), which is composed of the measures of data misfit and 
model roughness, with both terms being balanced by a (real-
valued) regularisation parameter λ:

� (8)

where d is the data vector (log impedance data), m is the model 
parameter vector (log complex resistivities of parameter cells 
(lumped elements of underlying finite-element mesh)), f(m)is the 
operator of the forward model,  is a data weighting matrix, 
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matrix,  (e.g., Alumbaugh and Newman 2000), which, for the 
complex case, is given by

� (10)

where  is the complex Jacobian matrix (for its com- 
 
putation, see Kemna (2000)). The model resolution matrix is 
usually evaluated at the end of the iterative inversion process. 
Due to its lower computational cost compared with , the cumu-
lative (and error-weighted) sensitivity, sL2, has been alternatively 
used (e.g., Kemna et al. 2002; Nguyen et al. 2009). Using the 
L2-norm, its components are given by Kemna (2000) as

� (11)

where aik is the i,kth element of the Jacobian matrix , i.e., the 
sensitivity of the ith datum with respect to the kth parameter cell. 
Note that also for the complex case, sL2 is a real-valued vector. 
The cumulated sensitivity is a measure of how much an entire 
dataset changes due to a changing model cell. Given the corre-
spondence between cumulated sensitivity and the diagonal of the 
model resolution matrix, the cumulated sensitivity can be used as 
a proxy for model resolution. We emphasise here that a large 
cumulated sensitivity does not necessarily imply a good resolu-
tion; however, good resolution cannot be expected for model 
cells exhibiting small cumulative sensitivities (Kemna 2000).

In addition to the L2-normed cumulated sensitivity, in our study, 
we also compute the L1-normed cumulated sensitivity based on the 
sum of the absolute values of the sensitivities (weighted by the 
absolute error of the corresponding measurement):

� (12)

and  is a (real-valued) matrix evaluating the first-order rough-
ness of m. Under the assumption that the data errors are uncor-
related and normally distributed,  is a diagonal matrix given 
by

� (9)

where i
 is the complex error estimate (standard deviation) of the 

ith datum, i.e.,  (with j denoting the imaginary 
unit). At each iteration step of the inversion, a univariate search 
is performed to find the maximum value of the regularisation 
parameter λ that locally minimises the data misfit.

In CR inversion, the data misfit is typically dominated by the 
real component of the complex data (that is log impedance mag-
nitude). To properly take into account the misfit in the phase 
(imaginary component of the data), subsequent to the complex 
inversion, additional inversion iterations are run only for the 
phase (i.e., as a real-valued inverse problem with the impedance 
phase values as data and the CR phase values as parameters). 
Here, the resistivity magnitude image from the complex inver-
sion is kept unchanged, and the same smoothness-constrained 
inversion procedure is used. For more details on the implementa-
tion of the inversion, we refer to Kemna (2000).

B. Image appraisal
Electrical resistivity images exhibit a variable spatial resolution 
(e.g., Oldenburg and Li 1999; Friedel 2003; Binley and Kemna 
2005). A common approach for the quantification of this variable 
resolution uses the diagonal entries of the model resolution 




