1887
Volume 7 Number 2
  • ISSN: 1569-4445
  • E-ISSN: 1873-0604

Abstract

ABSTRACT

Three‐dimensional (3D) reflection seismic data were recorded as part of a pilot scale carbon dioxide (CO) geological storage project (COSINK) with the aim of mapping the structural geometry of the site and providing a 3D baseline prior to CO injection. Standard processing originally focused on the storage target, a saline aquifer at 500–700 m depth and successful imaged coherent reflections from 150 ms to 900 ms in the seismic volume. However, the relatively sparse distribution of sources and receivers, the frequency content of the data and artefacts of the processing resulted in the uppermost 150 ms being poorly resolved. This depth range contains caprock, shallow faults and an aquifer system. Thus, characterizing the shallow subsurface is important in terms of site delineation of potential leakage paths and monitoring after CO injection. In order to study the potential of mapping the uppermost reflectors and shallow structures associated with major fault zones, a comprehensive reprocessing effort on a subset of the 3D data was performed. The challenge in imaging shallow reflections is dependent upon the separation of ground roll and refracted energy from the reflected energy, as well as compensation for time shifts due to statics. Among the processing sequences, refraction static corrections, careful muting and filtering, velocity analysis and 3D time migration were key steps for enhancing the resolution and coherency of shallow seismic reflections. This study images a previously unmapped horizon, close to the Quaternary‐Tertiary boundary, at about 95–120 ms (~65–90 m depth). Correlation of lateral variations in reflectivity along this boundary, lateral velocity variations in the tomographic image and the seismic signature in modelling studies suggest an aquifer/aquitard complex and variable lithology with associated localized silty or clayey sediments, overlying the Tertiary Rupelton clay unit. In the previous processing it was not clear if the deeper faults imaged on the 3D seismic survey extended to shallower levels than the base Tertiary. Thus, a comprehensive fault detection technique, multi‐attributes and neural networks analysis, was employed in this study to allow a more reliable fault geometry to be interpreted. Tracking of faults in the seismic image and comparisons with a tomography study indicate that some deeper faults may penetrate into the overlying Tertiary unit. These findings are important for understanding potentially risky areas and can be used as a database for future monitoring programmes at the site.

Loading

Article metrics loading...

/content/journals/10.3997/1873-0604.2008036
2008-11-01
2024-03-28
Loading full text...

Full text loading...

References

  1. ArtsR., EikenO., ChadwickA., ZweigelP., van der MeerL. and ZinsznerB.2004. Monitoring of CO2 injected at Sleipner using time lapse seismic data. Energy29, 1383–1392.
    [Google Scholar]
  2. BakerG.S., SteeplesD.W. and DrakeM.1998. Muting the noise cone in near‐surface reflection data: an example from southeastern Kansas. Geophysics63, 1332–1338.
    [Google Scholar]
  3. BernerK. and PawlitzkyM.2000. Hydrogeologische Karte von Brandenburg 1:50.000, Karte des weitgehend bedeckten Grundwasserleiterkomplexes GWLK2. In: Landesamt für Geowissenschaften und Rohstoffe Brandenburg, Hydrogeologiesche Karte von Brandenburg, Blatt L 3542 Ketzin, Kleinmachnow.
    [Google Scholar]
  4. BradfordJ.H.2002. Depth characterization of shallow aquifers with seismic reflection, Part I – The failure of NMO velocity analysis and quantitative error prediction. Geophysics67. 89–97.
    [Google Scholar]
  5. BradfordJ.H. and SawyerD.S.2002. Depth characterization of shallow aquifers with seismic reflection, Part II – Prestack depth migration and field examples. Geophysics67, 98–109.
    [Google Scholar]
  6. BradfordJ.H., SawyerD.S., ZeltC.A. and OldowJ.H.1998. Imaging a shallow aquifer in temperate glacial sediments using seismic reflection profiling with DMO processing. Geophysics63, 1248–1256.
    [Google Scholar]
  7. BükerF., GreenA. and HorstmeyerH.1998. Shallow 3‐D seismic reflection surveying: Data acquisition and preliminary processing strategies. Geophysics63, 1434–1450.
    [Google Scholar]
  8. BükerF., GreenA. and HorstmeyerH.2000. 3‐D high‐resolution reflection seismic imaging of unconsolidated glacial and glaciolacustrine sediments: Processing and interpretation. Geophysics65, 18–34.
    [Google Scholar]
  9. CarcioneJ.M., PicottiS., GeiD. and RossiG.2006. Physics and seismic modeling for monitoring CO2 storage. Pure and Applied Geophysics163, 175–207.
    [Google Scholar]
  10. ChadwickR.A., ZweigelP., GregersenU., KirbyG.A., HollowayS. and JohannessenP.N.2004. Geological reservoir characterization of a CO2 storage site: The Utsira Sand, Sleipner, northern North Sea. Energy29, 1371–1381.
    [Google Scholar]
  11. ChaouchA. and MariJ.L.2006. 3‐D land seismic surveys: Definition of geophysical parameters. Oil & Gas Science and Technology‐Rev. IFP 61, 611–630. dGB Earth Science. 2002. OpendTect user documentation version 3.
    [Google Scholar]
  12. FerociM., OrlandoL., BaliaR., BosmanC., CardarelliE. and DeiddaG.2000. Some considerations on shallow seismic reflection surveys. Journal of Applied Geophysics45, 127–139.
    [Google Scholar]
  13. FörsterA., NordenB., Zinck‐JørgensenK., FrykmanP., KulenkampffJ., SpangenbergE.ErzingerJ., ZimmerM., Kopp, J., BormG., JuhlinC., CosmaC. and HurterS.2006. Baseline characterization of the CO2SINK geological storage site at Ketzin, Germany. Environmental Geosciences13, 145–161.
    [Google Scholar]
  14. FranceseR., GiudiciM., SchmittD.R. and ZajaA.2005. Mapping the geometry of an aquifer system with a high‐resolution reflection seismic profile. Geophysical Prospecting53, 817–828. doi:10.1111/j.1365‐2478.2005.00506.x
    [Google Scholar]
  15. FranceseR.G., HajnalZ. and PruggerA.2002. High‐resolution images of shallow aquifers – A challenge in near‐surface seismology. Geophysics67, 177–187.
    [Google Scholar]
  16. GabrielG., KirschR., SiemonB. and WiederholdH.2003. Geophysical investigation of buried Pleistocene subglacial valleys in Northern Germany. Journal of Applied Geophysics53, 159–180.
    [Google Scholar]
  17. GardnerG.H.F., GardnerL.W. and GregoryA.R.1974. Formation velocity and density – The diagnostic basics for stratigraphic traps. Geophysics39, 770–780.
    [Google Scholar]
  18. GiustinianiM., AccainoF., PicottiS. and TinivellaU.2008. Characterization of the shallow aquifers by high‐resolution seismic data. Geophysical Prospecting56, 655–666. doi:10.1111/j.1365‐2478.2008.00705.x
    [Google Scholar]
  19. IPCC.2005. In: IPCC Special Report on Carbon Dioxide capture and Storage, Prepared by Working Group III of the Intergovernmental Panel on Climate Change (eds B.Metz , O.Davidson , H.C.de Coninck , M.Loos and L.Meyer ). Cambridge University Press.
    [Google Scholar]
  20. JuhlinC.1995. Finite‐difference elastic wave propagation in 2D heterogeneous transversely isotropic media. Geophysical Prospecting43, 843–858. doi:10.1111/j.1365‐2478.1995.tb00284.x
    [Google Scholar]
  21. JuhlinC., PalmH., MullernC. and WallbergB.2002. Imaging of groundwater resources in glacial deposits using high‐resolution reflection seismics, Sweden. Journal of Applied Geophysics51, 107–120.
    [Google Scholar]
  22. JuhlinC., GieseR., Zinck‐JørgensenK., CosmaC., KazemeiniH. and JuhojunttiN.2007. 3D baseline seismics at Ketzin, Germany: The CO2SINK project. Geophysics72, 121–132.
    [Google Scholar]
  23. KazemeiniH., JuhlinC., Zinck‐JørgensenK. and NordenB.2009. Application of the continuous wavelet transform on seismic data for mapping of channel deposits and gas detection at the CO2SINK site, Ketzin, Germany. Geophysical Prospecting57, 111–123. doi: 10.1111/j.1365‐2478.2008.00723.x
    [Google Scholar]
  24. KreftE., BernstoneC., MeyerR., MayF., ArtsR., ObdamA., SvenssonR., ErikssonS., DurstP., GausI., van der MeerB. and GeelC.2007. ‘The Schweinrich structure’, a potential site for industrial scale CO2 storage and a test case for safety assessment in Germany. International Journal of Greenhouse Gas Control1, 69–74.
    [Google Scholar]
  25. LibertyL.1998. Seismic reflection imaging of a geothermal aquifer in an urban setting. Geophysics63, 1285–1294.
    [Google Scholar]
  26. ManhenkeV.2002. Hydrostratigraphische Gliederung der känozoischen Lockergesteine von Brandenburg (in German). Brandenburgische Geowissenschaftliche Beiträge9, 59–64.
    [Google Scholar]
  27. MarionD., NurA., YinH. and HanD.1992. Compressional velocity and porosity in sand‐clay mixures. Geophysics57, 912–925.
    [Google Scholar]
  28. MarsdenD.1993. Statics corrections‐a review, part III. The Leading Edge12, 210–216.
    [Google Scholar]
  29. MeldahlP., HegglandR., BrilA.H. and de GrootP.F.2001. Identifying targets like faults and chimneys using multi‐attributes and neural networks. The Leading Edge20, 474–482.
    [Google Scholar]
  30. MillerR.D.1992. Normal moveout stretch mute on shallow‐reflection data. Geophysics57, 1502–1507.
    [Google Scholar]
  31. MillerR.D. and XiaJ.1998. Large near‐surface velocity gradients on shallow seismic reflection data. Geophysics63, 1348–1356.
    [Google Scholar]
  32. PratsonL.F., StroujkovaA., HerrickD., BoaduF. and MalinP.2003. Predicting seismic velocity and other rock properties from clay content only. Geophysics68, 1847–1856.
    [Google Scholar]
  33. PrevedelB., WohlgemuthL., HenningesJ., KrügerK., NordenB., FörsterA. and the CO2SINK group. 2008. Drilling of the CO2SINK boreholes for CO2 geological storage testing. Scientific Drilling6, 32–37.
    [Google Scholar]
  34. PruessK.2008. Leakage of CO2 from geologic storage: Role of secondary accumulation at shallow depth. International Journal of Greenhouse Gas Control2, 37–46.
    [Google Scholar]
  35. RavensJ.2007. Globe Claritas, Seismic Processing Software Manual – Part 1, 5th edn.
  36. ReinhardtH.G.1993. Regionales Kartenwerk der Reflexionsseismik. VEB Geophysik Leipzig.
    [Google Scholar]
  37. RossiG., GeiD., PicottiS. and CarcioneJ.M.2008. CO2 storage at Aztbach‐Schwanenstadt gas field: a seismic monitoring feasibility study. First Break26, 45–51.
    [Google Scholar]
  38. SchmelzbachC., HorstmeyerH. and JuhlinC.2007. Shallow 3D seismic‐reflection imaging of fracture zones in crystalline rock. Geophysics72, B149–B160.
    [Google Scholar]
  39. SheriffR.E. and GeldartL.P.1995. Exploration Seismology. Cambridge University Press.
    [Google Scholar]
  40. ShiJ., XueZ. and DurucanS.2007. Seismic monitoring and modelling of supercritical CO2 injection into a water‐saturated sandstone: Interpretation of P‐wave velocity data. International Journal of Greenhouse Gas Control1, 473–480.
    [Google Scholar]
  41. SpitzerR., GreenA.G. and NitscheF.O.2001. Minimizing field operations in shallow 3‐D seismic reflection surveying. Geophysics66, 1761–1773.
    [Google Scholar]
  42. SpitzerR., NitscheF.O., GreenA.G. and HorstmeyerH.2003. Efficient acquisition, processing, and interpretation strategy for shallow 3D seismic surveying: A case study. Geophysics68, 1792–1806.
    [Google Scholar]
  43. SteeplesD.W. and MillerR.D.1998. Avoiding pitfalls in shallow seismic reflection surveys. Geophysics63, 1213–1224.
    [Google Scholar]
  44. TingdahlK.M., BrilA.H. and de GrootP.F.2001. Improving seismic chimney detection using directional attributes. Journal of Petroleum Science and Engineering29, 205–211.
    [Google Scholar]
  45. TingdahlK.M. and de RooijM.2005. Semi‐automatic detection of faults in 3D seismic data. Geophysical Prospecting53, 533–542. doi:10.1111/j.1365‐2478.2005.00489.x
    [Google Scholar]
  46. TorpT.A. and GaleJ.2004. Demonstrating storage of CO2 in geological reservoirs: The Sleipner and SACS projects. Energy29, 1361–1369.
    [Google Scholar]
  47. TryggvasonA., Rognvaldsson S.Th. and FlovenzO.G.2002. Three‐dimensional imaging of the P‐ and S‐wave velocity structure and earthquake locations beneath Southwest Iceland. Geophysical Journal International151, 848–866.
    [Google Scholar]
  48. WangZ.2001. Fundamentals of seismic rock physics. Geophysics66, 398–412.
    [Google Scholar]
  49. WidessM.B.1973. How thin is a thin bed_Geophysics38, 1176–1180.
    [Google Scholar]
  50. WoodwardD.1994. Contributions to a shallow aquifer study by reprocessed seismic sections from petroleum exploration surveys, eastern Abu Dhabi, United Arab Emirates. Journal of Applied Geophysics31, 271–289.
    [Google Scholar]
  51. YilmazO.1987. Seismic Data Processing. SEG.
    [Google Scholar]
  52. YordkayhunS., JuhlinC., GieseR. and CosmaC.2007. Shallow velocity‐depth model using first arrival traveltime inversion at the CO2SINK site, Ketzin, Germany. Journal of Applied Geophysics63, 68–79.
    [Google Scholar]
  53. YordkayhunS., TryggvasonA., NordenB., JuhlinC. and BergmanB.2009. 3D seismic traveltime tomography imaging of the shallow subsurface at the CO2SINK project site, Ketzin, Germany. Geophysics, 74, G1–G15.
    [Google Scholar]
  54. YoungK.T. and TathamR.H.2007. Fluid discrimination of poststack “bright spots” in the Columbus Basin, offshore Trinidad. The Leading Edge26, 1508–1515.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.3997/1873-0604.2008036
Loading
/content/journals/10.3997/1873-0604.2008036
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error