1887
Volume 48 Number 3
  • E-ISSN: 1365-2478

Abstract

Euler's homogeneity equation has been used to develop a new technique to interpret the gravity anomalies over some simple geometrical sources, namely a finite horizontal line/vertical line, a finite vertical ribbon, a semicircular dome/basin and an isosceles triangle approximating an anticline/syncline. A linear over‐determined system of equations has been solved to compute the depth, the horizontal location and the structural index, all treated as free parameters. The concept of a variable structural index provides better depth estimates and helps to identify the source geometry. Nomograms have been prepared to compute an additional model parameter, namely the horizontal/vertical extent of a line, the vertical extent of a ribbon and the radius of a dome/basin. The efficacy of the proposed method has been evaluated using two real field examples.

Loading

Article metrics loading...

/content/journals/10.1046/j.1365-2478.2000.00203.x
2001-12-24
2024-04-23
Loading full text...

Full text loading...

References

  1. AbdelrahmanE.M. & SharafeldinS.M.1995 a. A least‐squares minimization approach to shape determination from gravity data. Geophysics60, 589590.
    [Google Scholar]
  2. AbdelrahmanE.M. & SharafeldinS.M.1995 b. A least‐squares minimization approach to depth determination from numerical horizontal gravity gradients. Geophysics60, 12591260.
    [Google Scholar]
  3. BarbosaV.C.F., SilvaJ.B.C., MedeirosW.E.1999. Stability analysis and improvement of structural index estimation in Euler deconvolution. Geophysics64, 4860.
    [Google Scholar]
  4. BarongoJ.1984. Euler's differential equation and the interpretation of the magnetic point‐pole and point‐dipole source. Geophysics49, 15491553.
    [Google Scholar]
  5. CassanoE. & RoccaF.1975. Interpretation of magnetic anomalies using spectral estimation techniques. Geophysical Prospecting23, 663681.
    [Google Scholar]
  6. ClaerboutJ.F.1976. Fundamentals of Geophysical Data Processing. Kingsport Press.
  7. DobrinM.B.1984. Introduction to Geophysical Prospecting. McGraw‐Hill Book Co.
  8. FairheadJ.D., BennettK.J., GordonD.R.H., HuangD.1994. Euler: beyond the ‘black box’. 64th SEG meeting, Los Angeles, USA, Extended Abstracts, 422424.
  9. GolubG.1965. Numerical methods for solving linear least‐squares problems. Numerische Mathematik7, 206216.
    [Google Scholar]
  10. GranserH.1987. Non‐linear inversion of gravity data using the Schmidt‐Lichtenstein approach. Geophysics52, 8893.
    [Google Scholar]
  11. GrantF.S. & WestG.F.1965. Interpretation Theory in Applied Geophysics. McGraw‐Hill Book Co.
  12. GuptaO.P.1983. A least‐squares approach to depth determination from gravity data. Geophysics48, 357360.
    [Google Scholar]
  13. HoodP.1965. Gradient measurements in aeromagnetic surveying. Geophysics30, 891902.
    [Google Scholar]
  14. KeatingP.B.1998. Weighted Euler deconvolution of gravity data. Geophysics63, 15951603.
    [Google Scholar]
  15. KlingeleE.E., MarsonI., KahleH.G.1991. Automatic interpretation of gravity gradiometric data in two dimensions: vertical gradient. Geophysics39, 407434.
    [Google Scholar]
  16. MarsonI. & KlingeleE.E.1993. Advantages of using the vertical gradient of gravity for 3‐D interpretation. Geophysics58, 15881595.
    [Google Scholar]
  17. NandiB.K., ShawR.K., AgarwalB.N.P.1997. Identification of the shape of simple causative sources from gravity data. Geophysical Prospecting45, 513520.
    [Google Scholar]
  18. NettletonL.L.1976. Gravity and Magnetics in Oil Prospecting. McGraw‐Hill Book Co.
  19. OdegardM.E. & BergJ.W.1965. Gravity interpretation using the Fourier integral. Geophysics30, 424438.
    [Google Scholar]
  20. RaoB.S.R. & MurthyI.V.R.1978. Gravity and Magnetic Methods of Geophysical DataProcessing. Arnold‐Heinemann Publishers, India.
  21. ReidA.B., AllsopJ.M., GranserH., MillettA.J., SomertonI.W.1990. Magnetic interpretation in three dimensions using Euler deconvolution. Geophysics55, 8091.
    [Google Scholar]
  22. RoyA.1962. Ambiguity in geophysical interpretation. Geophysics27, 9099.
    [Google Scholar]
  23. RoyL., AgarwalB.N.P., ShawR.K.1999. Estimation of shape factor and depth from gravity anomalies due to some simple sources. Geophysical Prospecting47, 4158.
    [Google Scholar]
  24. SkeelsD.C.1947. Ambiguity in gravity interpretation. Geophysics12, 4356.
    [Google Scholar]
  25. SlackH.A., LynchV.M., LaganL.1967. The geomagnetic gradiometer. Geophysics32, 872877.
    [Google Scholar]
  26. SmithR.A.1959. Some depth formulae for local magnetic and gravity anomalies. Geophysical Prospecting7, 5563.
    [Google Scholar]
  27. StavrevP.Y.1997. Euler deconvolution using differential similarity transforms of gravity or magnetic anomalies. Geophysical Prospecting45, 207246.
    [Google Scholar]
  28. TalwaniM., WorzelJ., LandismanM.1959. Rapid gravity computations for two dimensional bodies with application to the Mendocino submarine fracture zones. Journal of Geophysical Research64, 4449.
    [Google Scholar]
  29. ThompsonD.T.1982. EULDPH: a new technique for making computer‐assisted depth estimates from magnetic data. Geophysics47, 3137.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1046/j.1365-2478.2000.00203.x
Loading
/content/journals/10.1046/j.1365-2478.2000.00203.x
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error