1887
Volume 56, Issue 3
  • E-ISSN: 1365-2478

Abstract

ABSTRACT

We have implemented a 3D finite‐difference scheme to simulate wave propagation in arbitrary anisotropic media. The anisotropic media up to orthorhombic symmetry were modelled using a standard staggered grid scheme and beyond (monoclinic and triclinic) using a rotated staggered grid scheme. The rationale of not using rotated staggered grid for all types of anisotropic media is that the rotated staggered grid schemes are more expensive than standard staggered grid schemes. For a 1D azimuthally anistropic medium, we show a comparison between the seismic data generated by our finite‐difference code and by the reflectivity algorithm; they are in excellent agreement.

We conducted a study on zero‐offset shear‐wave splitting using the finite‐difference modelling algorithm using the rotated staggered grid scheme. Our S‐wave splitting study is mainly focused on fractured media. On the scale of seismic wavelenghts, small aligned fractures behave as an equivalent anisotropic medium. We computed the equivalent elastic properties of the fractures and the background in which the fractures were embedded, using low‐frequency equivalent media theories. Wave propagation was simulated for both rotationally invariant and corrugated fractures embedded in an isotropic background for one, or more than one, set of fluid‐filled and dry fractures. S‐wave splitting was studied for dipping fractures, two vertical non‐orthogonal fractures and corrugated fractures. Our modelling results confirm that S‐wave splitting can reveal the fracture infill in the case of dipping fractures. S‐wave splitting has the potential to reveal the angle between the two vertical fractures. We also notice that in the case of vertical corrugated fractures, S‐wave splitting is sensitive to the fracture infill.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2478.2007.00693.x
2008-04-21
2024-04-18
Loading full text...

Full text loading...

References

  1. AkiK. and RichardsP.G.2002. Quantitative seismology: University Science Books.
    [Google Scholar]
  2. AndoM., IshikawaY. and YamazakiF.1983. Shear wave polarization anisotropy in the upper mantle beneath Honshu, Japan. Journal of Geophysical Research88, 5850–5865.
    [Google Scholar]
  3. AngererE., HorneS.A., GaiserJ.E., WaltersR., BagalaS. and VetriL.2002. Characterization of dipping fractures using Ps mode‐converted data:, in 72nd SEG meeting, Salt Lake City , Utah , USA , 1010–1013.
    [Google Scholar]
  4. AuldB.A.1990. Acoustic fields and waves in solids: Krieger Publishing Co.
    [Google Scholar]
  5. BakulinA., GrechkaV. and TsvankinI.2000. Estimation of fracture parameters from reflection seismic data–part III: HTI model due to a single fracture set. Geophysics65, 1788–1802.
    [Google Scholar]
  6. BoothD.C. and CrampinS.1983. The anisotropic reflectivity technique–theory. Geophysical Journal of the Royal Astronomical Society72, 755–766.
    [Google Scholar]
  7. CarcioneJ.M., HermanG.C. and Ten KroodeA.P.2002. Seismic modeling. Geophysics67, 1304–1325.
    [Google Scholar]
  8. CerjanC., KosloffD., KosloffR. and ReshefM.1985. A nonreflecting boundary condition for discrete acoustic and elastic boundary condition. Geophysics, 50, 705–708.
    [Google Scholar]
  9. CoatesR.T. and SchoenbergM.1995. Finite‐difference modeling of faults and fractures. Geophysics60, 1514–1526.
    [Google Scholar]
  10. De HoopA.T.1995. Handbook of rdiation and scattering of waves: Academic Press.
    [Google Scholar]
  11. DongZ. and McMechanA.G.1995. 3‐D viscoelastic anisotropic modeling of data from a multicomponent, multiazimuth seismic experiment in northeast Texas. Geophysics60, 1128–1138.
    [Google Scholar]
  12. FariaE.L. and StoffaP.L.1994. Traveltime computation in transversely isotropic media. Geophysics59, 272–281.
    [Google Scholar]
  13. FouchM.J. and FischerK.M.1998. Shear wave anisotropy in the Mariana subduction zone. Geophysical Research Letters25, 1221–1224.
    [Google Scholar]
  14. FrankelA.1993. Three‐dimensional simulations of ground motions in the San Bernardino Valley, California, for hypothetical earthquakes on the San Andreas fault. Bulletin of the Seismological Society of America83, 1020–1041.
    [Google Scholar]
  15. FryerG.J. and FrazerL.N.1984. Seismic wave propagation in stratified anisotropic media. Geophysical Journal of the Royal Astronomical Society78, 691–710.
    [Google Scholar]
  16. GravesR.W.1996. Simulating seismic wave propagation in 3D elastic media using staggered‐grid finite difference. Bulletin of the Seismological Societyu of America86, 1091–1106.
    [Google Scholar]
  17. GrechkaV. and TsvankinI.2004. Characterization of dipping dipping fractures in a transversely isotropic background. Geophysical Prospecting52, 1–10.
    [Google Scholar]
  18. HelbigK.1994. Foundations of anisotropy for exploration seismics: Handbook of geophysical explorations: Pergamon Press.
    [Google Scholar]
  19. HudsonJ.A.1980. Overall properties of a cracked solid. Mathematical Proiceedings of the Cambridge Philosophical Society88, 371–384.
    [Google Scholar]
  20. IgelH., MoraP. and BrunoR.1995. Anisotropic wave propagation through finite‐difference grids. Geophysics60, 1203–1216.
    [Google Scholar]
  21. KellyK.R., WardR.W., TreitelS. and AlfordR.M.1976. Synthetic seismograms: a finite‐difference approach. Geophysics41, 2–27.
    [Google Scholar]
  22. KennettB.L.N.1983. Seismic wave propagation in stratified media: Cambridge University Press.
    [Google Scholar]
  23. LevanderA.R.1988. Fourth‐order finite‐difference P‐SV seismogram. Geophysics49, 1933–1957.
    [Google Scholar]
  24. LiuE., CrampinS., QueenJ.H. and RizerW.D.1993. Behaviour of shear waves in rocks with two sets of parallel cracks. Geophysical Journal International113, 509–517.
    [Google Scholar]
  25. LiuE., CrampinS. and HudsonJ.A.1997. Diffraction of seismic waves by cracks with application to hydraulic fracturing. Geophysics62, 253–265.
    [Google Scholar]
  26. MallickS. and FrazerL.N.1990a. Reflection/Transmission coefficients and azimuthal anisotropy in marine seismic studies. Geophysical Journal International105, 241–252.
    [Google Scholar]
  27. MallickS. and FrazerL.N.1990b. Computation of synthetic seismograms for stratified azimuthally anisotropic media. Journal of Geophysical Research95, 8513–8526.
    [Google Scholar]
  28. MarfurtK.J.1984. Accuracy of finite‐difference and finite‐element modeling of the scalar and elastic wave equations. Geophysics49, 533–549.
    [Google Scholar]
  29. MinkoffS.E.2002. Spatial parallelism of a 3D finite difference velocity‐stress elastic wave propagation code. SIAM Journal of Scientific Computing24, 1–19.
    [Google Scholar]
  30. MoczoP., KristekJ. and HaladaL.2000. 3D fourth‐order staggered‐grid finite‐difference schemes: Stability and grid dispersion. Bulletin of the Seismological Society of America90, 587–603.
    [Google Scholar]
  31. NakagawaS., NiheiK.T., MyerL.R. and MajerE.L.2003. Three‐dimensional elastic wave scattering by a layer containing vertical periodic fractures. Journal of the Acoustical Society of America113, 3012–3023.
    [Google Scholar]
  32. ÖzalaybeyS. and SavageM.K.1995. Shear‐wave splitting beneath western United States in relation to plate tectonics. Journal of Geophysical Research100, 18135–18149.
    [Google Scholar]
  33. PadovaniE., PrioloE. and SerianiG.1994. Low‐ and high‐order finite‐ element method: experience in seismic modeling. Journal of Computational Acoustics2, 371–422.
    [Google Scholar]
  34. PulliamJ. and SenM.K.1998. Anisotropy in the core‐mantle transition zone may indicate chemical heterogeneity. Geophysical Journal International135, 113–128.
    [Google Scholar]
  35. RügerA. and TsvankinI.1997. Using AVO for fracture detection: Analytic basis and practical solutions. The Leading Edge16, 1429–1434.
    [Google Scholar]
  36. RussoR.M. and SilverP.G.1994. Trench‐parallel flow beneath the Nazca Plate from seismic anisotropy. Science263, 1105–1111.
    [Google Scholar]
  37. SaengerE.H. and BohlenT.2004. Finite‐difference modeling of viscoelastic and anisotropic wave propagation using the rotated staggered grid. Geophysics69, 583–591.
    [Google Scholar]
  38. SaengerE.H., GoldN. and ShapiroS.A.2000. Modeling the propagation of elastic waves using a modified finite‐difference grid. Wave Motion31, 77–92.
    [Google Scholar]
  39. SayersC.M.1998. Misalignment of the orientation of fractures and the principal axes for P and S waves in rocks containing multiple non‐orthogonal fracture sets. Geophysical Journal International133, 459–466.
    [Google Scholar]
  40. SchoenbergM. and DoumaJ.1988. Elastic wave propagation in media with parallel fractures and aligned cracks. Geophysical Prospecting36, 571–590.
    [Google Scholar]
  41. SchoenbergM. and SayersC.1995. Seismic anisotropy of fractured rock. Geophysics60, 204–211.
    [Google Scholar]
  42. SenM.K., LaneF.D. and FosterD.J.2007. Anomalous reflection amplitudes from fractured reservoirs—Failure of AVOA. The Leading Edge In press.
    [Google Scholar]
  43. SerónF. J., BadalJ. and SabadellF.J.1996. A numerical laboratory for simulation and visualization of seismic wavefields. Geophysical Prospecting44, 603–642.
    [Google Scholar]
  44. SheriffR.E.2002. Encyclopedia dictionary of applied geophysics: Society of Exploration Geophysics.
  45. SilverP.G. and ChanW.W.1988. Implications for continental structure and evolution for seismic anisotropy. Nature335, 34–39.
    [Google Scholar]
  46. ThomsenL.1986. Weak elastic anisotropy. Geophysics51, 1954–1966.
    [Google Scholar]
  47. TsvankinI.1997a. Anisotropic parameters and P‐wave velocity for orthorhombic media. Geophysics62, 1292–1309.
    [Google Scholar]
  48. TsvankinI.1997b. Reflection moveout and parameter estimation for horizontal transverse isotropy. Geophysics62, 614–629.
    [Google Scholar]
  49. VirieuxJ.1984. SH‐wave propagation in heterogeneous media: Velocity‐stress finite‐difference method. Geophysics49, 1933–1957.
    [Google Scholar]
  50. VirieuxJ.1986. P‐SV wave propagation in heterogeneous media: Velocity‐stress finite‐difference method. Geophysics51, 889–901.
    [Google Scholar]
  51. VlastosS., LiuE., MainI.G. and LiX.Y.2003. Numerical simulation of wave propagation in media with discrete distribution of fractures: effects of fracture sizes and spatial distributions. Geophysical Prospecting152, 649–668.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2478.2007.00693.x
Loading
/content/journals/10.1111/j.1365-2478.2007.00693.x
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error