1887

Abstract

The paper proposes a novel data driven approach for modelling petrophysical properties in oil reservoir. We aim to improve realism of reservoir models with a more intelligent way of integrating the raw data and geological knowledge. Multiple Kernel Learning (MKL) provides enhanced interpretability of the model by using separate kernels for input variables performs kernel/feature selection to solve a regression problem in a high-dimensional feature space. MKL has an advantage of rigorous control over the model complexity to achieve the right balance between data fit and prediction accuracy. The MKL reservoir model was designed to integrate data and prior knowledge, which describe geological structure at multiple scales. Geological structures can be detected by applying convolution filters on noisy seismic data to capture changes in gradients, orientations, sizes of meandering channels. Such "geo-features" are added as input variables into the MKL model, which optimises the weighted combination of kernels to fit to the available data. MKL application to a synthetic meandering channel reservoir has demonstrated capacity of selecting the relevant input information for detecting the channel structure. Experiments with noisy seismic inputs highlighted feature selection skills of MKL which was able to filter them out.

Loading

Article metrics loading...

/content/papers/10.3997/2214-4609.20144962
2010-09-06
2024-04-26
Loading full text...

Full text loading...

http://instance.metastore.ingenta.com/content/papers/10.3997/2214-4609.20144962
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error