1887
Volume 25, Issue 2
  • E-ISSN: 1365-2117

Abstract

Abstract

Multichannel high‐resolution seismic and multibeam data were acquired from the Maldives‐isolated carbonate platform in the Indian Ocean for a detailed characterization of the Neogene bank architecture of this edifice. The goal of the research is to decipher the controlling factors of platform evolution, with a special emphasis on sea‐level changes and changes of the oceanic currents. The stacking pattern of Lower to Middle Miocene depositional sequences, with an evolution of a ramp geometry to a flat‐topped platform, reflects variations of accommodation, which here are proposed to be primarily governed by fluctuations of relative sea level. Easterly currents during this stage of bank growth controlled an asymmetric east‐directed progradation of the bank edge. During the late middle Miocene, this system was replaced by a twofold configuration of bank development. Bank growth continued synchronously with partial bank demise and associated sediment‐drift deposition. This turnover is attributed to the onset and/or intensification of the Indian monsoon and related upwelling and occurrence of currents, locally changing environmental conditions and impinging upon the carbonate system. Mega spill over lobes, shaped by reversing currents, formed as large‐scale prograding complexes, which have previously been interpreted as deposits formed during a forced regression. On a regional scale, a complex carbonate‐platform growth can occur, with a coexistence of bank‐margin progradation and aggradation, as well as partial drowning. It is further shown that a downward shift of clinoforms and offlapping geometries in carbonate platforms are not necessarily indicative for a sea‐level driven forced regression. Findings are expected to be applicable to other examples of Cenozoic platforms in the Indo‐Pacific region.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2117.2012.00554.x
2012-06-08
2024-04-20
Loading full text...

Full text loading...

References

  1. Anselmetti, F.S. & Eberli, G.P. (2001) Sonic velocity in carbonates – a combined product of depositional lithology and diagenetic alterations. In: Subsurface Geology of a Prograding Carbonate Platform Margin, Great Bahama Bank: Results of the Bahamas Drilling Project (Ed. by GinsburgR.N. ), SEPM Spec. Publ., 70, 193–216. SEPM, Tulsa, OK.
    [Google Scholar]
  2. Anselmetti, F.S., Eberli, G.P. & Ding, Z.‐D. (2000) From the Great Bahama Bank into the Straits of Florida: a Margin Architecture Controlled by Sea‐Level Fluctuations and Ocean Currents. Geol. Soc. Am. Bull., 112, 829–844.
    [Google Scholar]
  3. Aubert, O. & Droxler, A.W. (1992) General cenozoic evolution of the Maldives carbonate system (equatorial Indian Ocean). Bull. Centres Rech. Explor.‐Prod. Elf‐Aquitaine, 16, 113–136.
    [Google Scholar]
  4. Aubert, O. & Droxler, A.W. (1996) Seismic stratigraphy and depositional signatures of the Maldive carbonate system (Indian Ocean). Mar. Pet. Geol., 13, 503–536.
    [Google Scholar]
  5. Backman, J., Duncan, R.A., Peterson, L.C., Baker, P.A., Baxter, A.N. & Boersma, A. (1988) Mascarene Plateau ‐ Sites 705–716. Ocean Drilling Program, College Station, TX.
    [Google Scholar]
  6. Belopolsky, A.V. & Droxler, A.W. (2003) Imaging tertiary carbonate systems ‐ the Maldives, Indian Ocean: insights into carbonate sequence interpretation. Lead. Edge, 22, 646–652.
    [Google Scholar]
  7. Belopolsky, A.V. & Droxler, A.W. (2004a) Seismic expressions of prograding carbonate bank margins: middle Miocene, Maldives, Indian Ocean. In: Seismic Imaging of Carbonate Reservoirs and Systems (Ed. by EberliG.P. , MasaferroJ.L. & SargJ.F. ), AAPG Mem., 81, 267–290. Am Assoc Pet Geol, Tulsa, OK.
    [Google Scholar]
  8. Belopolsky, A.V. & Droxler, A.W. (2004b) Seismic expressions and interpretation of carbonate sequences: the Maldives Platform, Equatorial Indian Ocean. AAPG Stud. Geol., 49, 1–46.
    [Google Scholar]
  9. Betzler, C., Kroon, D. & Reijmer, J.J.G. (2000) Synchroneity of major late Neogene sea‐level fluctuations and paleoceanographically controlled changes as recorded by two carbonate platforms. Paleoceanography, 15, 722–730.
    [Google Scholar]
  10. Betzler, C., Hübscher, C., Lindhorst, S., Reijmer, J.J.G., Römer, M., Droxler, A., Fürstenau, J. & Lüdmann, T. (2009) Monsoon‐induced partial carbonate platform drowning (Maldives, Indian Ocean). Geology, 37, 867–870.
    [Google Scholar]
  11. Betzler, C., Lindhorst, S., Hübscher, C., Lüdmann, T., Fürstenau, J. & Reijmer, J.J.G. (2011) Giant pockmarks in a carbonate platform (Maldives, Indian Ocean). Marine Geology, 289, 1–16.
    [Google Scholar]
  12. Bourrouilh‐Le Jan, F.G. & Hottinger, L.C. (1988) Occurrence of rhodolites in the tropical Pacific ‐ a consequence of Mid‐Miocene paleo‐oceanographic change. Sed. Geol., 60, 355–367.
    [Google Scholar]
  13. Catuneanu, O., Abreu, V., Bhattacharya, J.P., Blum, M.D., Dalrymple, R.W., Eriksson, P.G., Fielding, C.R., Fisher, W.L., Galloway, W.E., Gibling, M.R., Giles, K.A., Holbrook, J.M., Jordan, R., Kendall, C.G.S.C., Macurda, B., Martinsen, O.J., Miall, A.D., Neal, J.E., Nummedal, D., Pomar, L., Posamentier, H.W., Pratt, B.R., Sarg, J.F., Shanley, K.W., Steel, R.J., Strasser, A., Tucker, M.E. & Winker, C. (2009) Towards the standardization of sequence stratigraphy. Earth‐Sci. Rev., 92, 1–33.
    [Google Scholar]
  14. Ciarapica, G. & Passeri, L. (1993) An overview of the Maldivian coral reefs in Felidu and north Malé Atoll (Indian Ocean): platform drowning by ecological crisis. Facies, 28, 33–65.
    [Google Scholar]
  15. Clift, P.D., Hodges, K.V., Heslop, D., Hannigan, R., Van Long, H. & Calves, G. (2008) Correlation of Himalayan exhumation rates and Asian monsoon intensity. Nat. Geosci., 1, 875–880.
    [Google Scholar]
  16. Cloething, S., McQueen, H. & Lambeck, K. (1985) On a tectonic mechanism for regional sealevel variations. Earth Planet. Sci. Lett., 75, 157–166.
    [Google Scholar]
  17. Droxler, A., Haddad, G.A., Mucciarone, D.A. & Cullen, J.L. (1990) Pliocene‐Pleistocene aragonite cyclic variations in holes 714a and 716b (the Maldives) compared with hole 633a (the Bahamas): records of climate‐induced CaCO3 preservation at intermediate water depths. In: Proceedings of the Ocean Drilling Program, Scientific Results (Ed. by R.A.Duncan , J.Backman & L.C.Peterson ), 115, 539–577. College Station, Texas.
    [Google Scholar]
  18. Duncan, R.A. & Hargraves, R.B. (1990) 40Ar/39Ar geochronology of basement rocks from the Mascarene Plateau, the Chagos Bank, and the Maldives Ridge. In: Proceedings of the Ocean Drilling Program, Scientific Results (Ed. by DuncanR.A. , BackmanJ. & PetersonL.C. ), 115, 43–51. College Station, Texas.
    [Google Scholar]
  19. Eberli, G.P. & Ginsburg, R.N. (1987) Segmentation and Coalescence of Cenozoic Carbonate Platforms, Northwestern Great Bahama Bank. Geology, 15, 75–79.
    [Google Scholar]
  20. Eberli, G.P. & Ginsburg, R.N. (1989) Cenozoic progradation of northwestern Great Bahama Bank, a record of lateral platform growth and sea‐level fluctuations. In: Controls on Carbonate Platform and Basin Development (Ed. by CrevelloP.D. , WilsonJ.L. , SargJ.F. & ReadJ.F. ), SEPM Spec. Publ., 44, 339–351. SEPM, Tulsa, OK.
    [Google Scholar]
  21. Eberli, G.P., Anselmetti, F.S., Isern, A.R. & Delius, H. (2010) Timing of changes in sea‐level and currents along Miocene Platforms on the Marion Plateau, Australia. In: Cenozoic Carbonate Systems of Australia (Ed. by MorganW.A. , GeorgeA.D. , HarrisP.M. , J.A.Kupecz & J.F.Sarg ), SEPM Spec. Publ., 95, 219–242. SEPM, Tulsa, OK.
    [Google Scholar]
  22. Erlich, R.N., Barrett, S.F. & Ju, G.B. (1990) Seismic and geologic characteristics of drowning events on carbonate platforms. AAPG Bull., 74, 1523–1537.
    [Google Scholar]
  23. Erlich, R.N., Longo, A.P. & Hyare, S. (1993) Response of carbonate platform margins to drowning: evidence of environmental collapse. In: Carbonate Sequence Stratigraphy (Ed. by LoucksR.G. & SargJ.F. ), AAPG Mem., 57, 241–266. Am Assoc Pet Geol, Tulsa, OK.
    [Google Scholar]
  24. Faugères, J.‐C., Stow, D.A.V., Imbert, P. & Viana, A. (1999) Seismic features diagnostic of contourite drifts. Mar. Geol., 162, 1–38.
    [Google Scholar]
  25. Flower, B.P. & Kennett, J.P. (1994) The middle Miocene climatic transition: east Antarctic ice sheet development, deep ocean circulation and global carbon cycling. Palaeogeogr. Palaeoclimatol. Palaeoecol., 108, 537–555.
    [Google Scholar]
  26. Fontaine, J.M., Cussey, R., Lacaze, J., Lanaud, R. & Yapaudjian, L. (1987) Seismic interpretation of carbonate depositional environments. AAPG Bull., 71, 281–297.
    [Google Scholar]
  27. Fürstenau, J., Lindhorst, S., Betzler, C. & HüBSCHER, C. (2010) Submerged reef terraces of the Maldives indicate variations in the rate of deglacial sea‐level rise during MWP‐1A. Geo‐Marine Letters, 30, 511–515.
    [Google Scholar]
  28. Gischler, E. (2006) Sedimentation on Rasdhoo and Ari Atolls, Maldives, Indian Ocean. Facies, 52, 341–360.
    [Google Scholar]
  29. Gischler, E., Hudson, J.H. & Pisera, A. (2008) Late quaternary reef growth and sea level in the Maldives (Indian Ocean). Mar. Geol., 250, 104–113.
    [Google Scholar]
  30. Halfar, J. & Mutti, M. (2005) Global dominance of coralline red‐algal facies: a response to Miocene oceanographic events. Geology, 33, 481–484.
    [Google Scholar]
  31. Haq, B.U., Hardenbol, J. & Vail, P.R. (1987) Chronology of fluctuating sea levels since the Triassic. Science, 235, 1156–1167.
    [Google Scholar]
  32. Hine, A.C., Wilber, R.J., Bane, J.M., Neumann, A.C. & Lorenson, K.R. (1981) Offbank transport of carbonate sands along open, leeward bank margins: Northern Bahamas. Mar. Geol., 42, 327–348.
    [Google Scholar]
  33. Hunt, D. & Tucker, M.E. (1992) Stranded parasequences and the forced regressive wedge systems tract: deposition during base‐level fall. Sed. Geol., 81, 1–9.
    [Google Scholar]
  34. Isern, A.R., Anselmetti, F.S. & Blum, P. (2004) A neogene carbonate platform, slope, and shelf edifice shaped by sea level and ocean currents, Marion Plateau (Northeast Australia). In: Seismic Imaging of Carbonate Reservoirs and Systems (Ed. by EberliG.P. , MasaferroJ.L. & SargJ.F. ), AAPG Mem., 81, 291–307. Am Assoc Pet Geol, Tulsa, OK.
    [Google Scholar]
  35. Janson, X., Van Buchem, F.S.P., Dromart, G., Eichenseer, H.T., Dellamonica, X., Boichard, R., Bonnaffe, F. & Eberli, G. (2010) Architecture and facies differentiation within a Middle Miocene carbonate platform, Ermenek, Mut Basin, Southern Turkey. In: Mesozoic and Cenozoic Carbonate Systems of the Mediterranean and the Middle East: Stratigraphic and Diagenetic Reference Models (Ed. by van BuchemF.S.P. , GerdesK.D. & EstebanM. ), SEPM Spec. PubL., 329, 265–290. Geol. Soc., London.
    [Google Scholar]
  36. Kominz, M.A., Browning, J.V., Miller, K.G., Sugarman, P.J., Mizintseva, S. & Scotese, C.R. (2008) Late Cretaceous to Miocene sea‐level estimates from the New Jersey and Delaware coastal plain coreholes: an error analysis. Basin Res., 20, 211–226.
    [Google Scholar]
  37. Kroon, D., Steens, T.N.F. & Troelstra, S.R. (1991) Onset of monsoonal related upwelling in the western Arabian sea as revealed by planktonic foraminifers. In: Proc. ODP, Sci. Results (Ed. by N.J.Stewart ), 117, 257–263. College Station, Texas.
    [Google Scholar]
  38. Lear, C.H., Elderfield, H. & Wilson, P.A. (2000) Cenozoic deep‐sea temperature and global ice volumes from Mg/Ca in benthic foraminiferal calcite. Science, 287, 269–272.
    [Google Scholar]
  39. Lewis, A.R., Marchant, D.R., Ashworth, A.C., Hemming, S.R. & Machlus, M.L. (2007) Major Middle Miocene global climate change: evidence from east Antarctica and Transantarctic Mountains. Geol. Soc. Am. Bull., 119, 1449–1461.
    [Google Scholar]
  40. Lukasik, J. & Simo, J.A. (2008) Controls on development of Phanerozoic carbonate platforms and reefs ‐ introduction and synthesis. In: Controls on Carbonate Platform and Reef Development (Ed. by LukasikJ. & SimoJ.A. ). SEPM Spec. Publ., 89, 5–12. SEPM, Tulsa, OK.
    [Google Scholar]
  41. Malone, M.J., Baker, P.A., Burns, S.J. & Swart, P.K. (1990) Geochemistry of Periplatform Carbonate Sediments, Leg 115, Site 716 (Maldives Archipelago, Indian Ocean). In: Proc. ODP, Sci. Results (Ed. by DuncanR.A. , BackmanJ. & PetersonL.C. ), 115, 647–659. College Station, Texas.
    [Google Scholar]
  42. Miller, K.G., Wright, J.D. & Fairbanks, R.G. (1991) Unlocking the ice house: oligocene‐miocene oxygen isotopes, eustasy, and margin erosion. J. Geophys. Res., 96, 6829–6848.
    [Google Scholar]
  43. Miller, K.G., Kominz, M.A., Browning, J.V., Wright, J.D., Mountain, G.S., Katz, M.E., Sugarman, P.J., Cramer, B.S., Christie‐Blick, N. & Pekar, S.F. (2005) The phanerozoic record of global sea‐level change. Science, 310, 1293–1298.
    [Google Scholar]
  44. Miller, K.G., Mountain, G.S., Wright, J.D. & Browning, J.V. (2011) A 180‐million‐year record of sea level and ice volume variations from continental margin and deep‐sea isotopic records. Oceanography, 24, 40–53.
    [Google Scholar]
  45. Moucha, R., Forte, A.M., Mitrovica, J.X., Rowley, D.B., Quéré, S., Simmons, N.A. & Grand, S.P. (2008) Dynamic topography and long‐term sea‐level variations: there is no such thing as a stable continental platform. Earth Planet. Sci. Lett., 271, 101–108.
    [Google Scholar]
  46. Mutti, M., Droxler, A.W. & Cunningham, A.D. (2005) Evolution of the northern Nicaragua rise during the Oligocene‐Miocene: drowning by environmental factors. Sed. Geol., 175, 237–258.
    [Google Scholar]
  47. Pomar, L. & Ward, W.C. (1994) Response of a late miocene Mediterranean reef platform to high‐frequency Eustasy. Geology, 22, 131–134.
    [Google Scholar]
  48. Posamentier, H.W., Allen, G.P., James, D.P. & Tesson, M. (1992) Forced regressions in a sequence stratigraphic framework: concepts, examples, and exploration significance. AAPG Bull., 76, 1687–1709.
    [Google Scholar]
  49. Preu, C. & Engelbrecht, C. (1991) Patterns and Processes Shaping the Present Morphodynamics of Coral Reef Islands: Case Study from the North‐Male Atoll, Maldives. In: Von Der Nordsee Bis Zum Indischen Ozean (Ed. by H.Brückner & U.Radke ), pp. 209–220. Steiner, Stuttgart.
    [Google Scholar]
  50. Purdy, E. & Bertram, G.T. (1993) Carbonate concepts from the Maldives, Indian Ocean. AAPG Stud. Geol., 34, 56.
    [Google Scholar]
  51. Rea, D.K. (1992) Delivery of Himalayan Sediment to the Northern Indian Ocean and Its Relation to Global Climate, Sea Level, Uplift, and Seawater Strontium. In: Synthesis of Results From Scientific Drilling in the Indian Ocean (Ed. by DuncanR.A. , ReaD.K. , KiddR.B. , von RadU. & WeisselJ.K. ), Geophysical Monograph, 70, 387–402. Am. Geophys. Union, Washington, DC.
    [Google Scholar]
  52. Rio, D., Fornaciari, E. & Raffi, I. (1990) Late Oligocene through early Pleistocene calcareous nannofossils from western equatorial Indian Ocean (Leg 115). In: Proceedings of the Ocean Drilling Program, Scientific Results (Ed. by DuncanR.A. , BackmanJ. & PetersonL.C. ), 115, 175–235. College Station, Texas.
    [Google Scholar]
  53. Roberts, H., Phipps, C. & Effendi, L. (1987) Morphology of large Halimeda bioherms, eastern Java Sea (Indonesia): a side‐scan sonar study. Geo‐Mar. Lett., 7, 7–14.
    [Google Scholar]
  54. Roberts, H.H., Aharon, P. & Phipps, C.V. (1988) Morphology and sedimentology of Halimeda bioherms from the eastern Java Sea (Indonesia). Coral Reefs, 6, 151–172.
    [Google Scholar]
  55. Sattler, U., Immenhauser, A., Schlager, W. & Zampetti, V. (2009) Drowning history of a Miocene carbonate platform (Zhujiang Formation, South China Sea). Sed. Geol., 219, 318–331.
    [Google Scholar]
  56. Schlager, W. (1992) Sedimentology and sequence stratigraphy of reefs and carbonate platforms. AAPG Cont. Educ. Course Ser., 34, 71.
    [Google Scholar]
  57. Schlager, W. (2005) Carbonate Sedimentology and Sequence Stratigraphy. SEPM, Tulsa, OK.
    [Google Scholar]
  58. Schlager, W., Reijmer, J.J.G. & Droxler, A.W. (1994) Highstand shedding of carbonate platforms. J. Sed. Res., 64, 270–281.
    [Google Scholar]
  59. Shackleton, N.J. & Kennett, J.P. (1975) Paleotemperature history of the cenozoic and the initiation of Antarctic glaciation: oxygen and carbon isotope analyses in DSDP sites 277, 279, and 281. In: Init. Reports DSDP (Ed. by KennettJ.P. & HoutzR.E. et al.), 29, 743–755. U.S. Government Printing Office, Washington, DC.
    [Google Scholar]
  60. Tcherepanov, E.N., Droxler, A.W., Lapointe, P. & Mohn, K. (2008) Carbonate seismic stratigraphy of the Gulf of Papua mixed depositional system: neogene stratigraphic signature and eustatic control. Basin Res., 20, 185–209.
    [Google Scholar]
  61. Tomczak, M. & Godfrey, J.S. (2003) Regional Oceanography: An Introduction. Daya Publ. House, Delhi.
    [Google Scholar]
  62. Wilson, M.E.J. & Vecsei, A. (2005) The apparent paradox of abundant foramol facies in low latitudes: their environmental significance and effect on platform development. Earth‐Sci. Rev., 69, 133–168.
    [Google Scholar]
  63. Woodruff, F. & Savin, S.M. (1989) Miocene deepwater oceanography. Paleoceanography, 4, 87–140.
    [Google Scholar]
  64. Zachos, J., Pagani, M., Sloan, L., Thomas, E. & Billups, K. (2001) Trends, rhythms, and aberrations in global climate. Science, 292, 686–693.
    [Google Scholar]
  65. Zheng, H., Powell, C.M., Rea, D.K., Wang, J. & Wang, P. (2004) Late Miocene and mid‐Pliocene enhancement of the east Asian monsoon as viewed from the land and sea. Global Planet. Change, 41, 147–155.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2117.2012.00554.x
Loading
/content/journals/10.1111/j.1365-2117.2012.00554.x
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error