1887

Abstract

Summary

The truncated plurigaussian model is often used to simulate the spatial distribution of random categorical variables such as geological facies.

The problems addressed in this paper are the estimation of parameters of the truncation map for the truncated plurigaussian model, and improvements in the method for conditioning the latent Gaussian random variables to observations of categorical variables.

Unlike standard truncation maps, in this paper a colored Voronoi tessellation with number of nodes, locations of nodes, and category associated with each node all treated as unknowns in the optimization. Parameters were adjusted to match categorical bivariate unit-lag probabilities, which were obtained from a larger pattern joint distribution estimates from the Bayesian maximum-entropy approach conditioned to the unit-lag probabilities. The distribution of categorical variables generated from the estimated truncation map was close to the target unit-lag bivariate probabilities.

The conditioning of the latent Gaussian fields to log-data is also generalized for the case when the truncated bigaussian model is governed by a colored Vorono”i tessellation of the truncation map. Compared to the standard Gibbs sampler, the new approach gives better mixing properties for large amount of closely correlated data observations.

Loading

Article metrics loading...

/content/papers/10.3997/2214-4609.20141830
2014-09-08
2024-04-26
Loading full text...

Full text loading...

References

  1. Al-Anezi, K. et al.
    [2013] Geostatistical modeling with seismic characterization of Wara/Burgan sands Minagish Field West Kuwait. SPE Reserv. Charact. and Simul. Conf. and Exhib., Abu Dhabi, 16–18 Sept., Society of Petroleum Engineers, SPE 166046.
    [Google Scholar]
  2. Albertão, G.A., Grell, A.P., Badolato, D. and dos Santos, L.R.
    [2005] 3D geological modeling in a turbidite system with complex stratigraphic-structural framework—an example from Campos Basin Brazil. SPE Annu. Tech. Conf. and Exhib., Dallas, Texas, 9–12 Oct., Society of Petroleum Engineers, SPE 95612.
    [Google Scholar]
  3. Allard, D., D’Or, D., Biver, P. and Froidevaux, R.
    [2012] Non-parametric diagrams for pluri-gaussian simulations of lithologies. 9th Int. Geostat. Congr., Oslo, Norway, 11–15.
    [Google Scholar]
  4. Armstrong, M. et al.
    [2011] Plurigaussian Simulations in Geosciences. Springer Berlin Heidelberg, 2nd edn., ISBN 978-3-642-19607-2, doi:10.1007/978‑3‑642‑19607‑2.
    https://doi.org/10.1007/978-3-642-19607-2 [Google Scholar]
  5. Bogaert, P.
    [2002] Spatial prediction of categorical variables: the Bayesian maximum entropy approach. Stoch. Environ. Res. Risk Assess., 16(6), 425–448, ISSN 1436-3240, doi:10.1007/s00477‑002‑0114‑4.
    https://doi.org/10.1007/s00477-002-0114-4 [Google Scholar]
  6. Carrillat, A., Sharma, S.K., Grossmann, T., Iskenova, G., Friedel, T. et al.
    [2010] Geomodeling of giant carbonate oilfields with a new multipoint statistics workflow. Abu Dhabi Int. Petroleum Exhib. and Conf., Society of Petroleum Engineers, SPE 137958.
    [Google Scholar]
  7. Cherbunin, C., Giasi, C.I., Musci, F. and Pastore, N.
    [2009] Application of truncated plurigaussian method for the reactive transport modeling of a contaminated aquifer. Proc. of the 4th IASME / WSEAS Int. Conf. on Water Resour., Hydraul. & Hydrol. (WHH’09), 119–124.
    [Google Scholar]
  8. Chilès, J.P. and Delfiner, P.
    [1999] Geostatistics: Modeling Spatial Uncertainty. John Wiley & Sons, New York.
    [Google Scholar]
  9. Deutsch, J.L. and Deutsch, C.V.
    [2014] A multidimensional scaling approach to enforce reproduction of transition probabilities in truncated plurigaussian simulation. Stoch. Environ. Res. and Risk Assess., 28(3), 707–716.
    [Google Scholar]
  10. Du, Q., Faber, V. and Gunzburger, M.
    [1999] Centroidal Voronoi tessellations: Applications and algorithms. SIAM Rev., 41(4), 637–676, ISSN 0036-1445, doi:10.1137/S0036144599352836.
    https://doi.org/10.1137/S0036144599352836 [Google Scholar]
  11. Emery, X.
    [2010] On the existence of mosaic and indicator random fields with spherical, circular, and triangular variograms. Math. Geosci., 42, 969–984, ISSN 1874-8961, doi:10.1007/s11004‑010‑9282‑9.
    https://doi.org/10.1007/s11004-010-9282-9 [Google Scholar]
  12. Emery, X., Arroyo, D. and Peláez, M.
    [2014] Simulating large Gaussian random vectors subject to inequality constraints by Gibbs sampling. Math. Geosci., 46(3), 265–283, ISSN 1874-8961, doi:10.1007/s11004‑013‑9495‑9.
    https://doi.org/10.1007/s11004-013-9495-9 [Google Scholar]
  13. Fachri, M., Tveranger, J., Braathen, A. and Schueller, S.
    [2013] Sensitivity of fluid flow to deformation-band damage zone heterogeneities: A study using fault facies and truncated gaussian simulation. J. of Struct. Geol., 52, 79–.
    [Google Scholar]
  14. Galli, A., Beucher, H., Le Loc’h, G., Doligez, B. and Group, H.
    [1994] The pros and cons of the truncated Gaussian method. In: Geostat. Simul. Kluwer Academic, Dordrecht, 217–233.
    [Google Scholar]
  15. Galli, A. and Gao, H.
    [2001] Rate of convergence of the Gibbs sampler in the Gaussian case. Math. Geol., 33(6), 653–677, ISSN 0882-8121, doi:10.1023/A:1011094131273.
    https://doi.org/10.1023/A:1011094131273 [Google Scholar]
  16. Galli, A., Le Loc’h, G., Geffroy, F. and Eschard, R.
    [2006] An application of the truncated pluri-gaussian method for modeling geology. In: Coburn, T.C., Yarus, J.M. and Chambers, R.I. (Eds.) Stoch. Model. and Geostat.: Princ., Methods, and Case Stud., Vol. II: AAPG Comput. Appl. in Geol. AAPG Special Volumes, 109–122.
    [Google Scholar]
  17. Jaynes, E.T.
    [1957] Information theory and statistical mechanics. Phys. Rev., 106(4), 620–630, doi: 10.1103/PhysRev.106.620.
    https://doi.org/10.1103/PhysRev.106.620 [Google Scholar]
  18. Kyriakidis, P.C., Deutsch, C.V. and Grant, M.L.
    [1999] Calculation of the normal scores variogram used for truncated Gaussian lithofacies simulation: theory and FORTRAN code. Comput. & Geosci., 25(2), 161–169.
    [Google Scholar]
  19. Le Loc’h, G., Beucher, H., Galli, A., Doligez, B. and Group, H.
    [1994] Improvement in the truncated Gaussian method: Combining several Gaussian Functions. Proc. of the 4th Eur. Conf. on the Math. of Oil Recovery (ECMOR), 13 p.
    [Google Scholar]
  20. Mariethoz, G., Renard, P., Cornaton, F. and Jaquet, O.
    [2009] Truncated plurigaussian simulations to characterize aquifer heterogeneity. Ground Water, 47(1), 13–24, ISSN 1745-6584, doi:10.1111/j.1745‑6584.2008.00489.x.
    https://doi.org/10.1111/j.1745-6584.2008.00489.x [Google Scholar]
  21. Matheron, G., Beucher, H., de Fouquet, C., Galli, A., Guerillot, D. and Ravenne, C.
    [1987] Conditional simulation of the geometry of fluvio-deltaic reservoirs, SPE 16753. Proc. of the 62nd Annu. Tech. Conf. of the SPE, 123–131.
    [Google Scholar]
  22. Perulero Serrano, R., Guadagnini, L., Giudici, M., Guadagnini, A. and Riva, M.
    [2012] Application of the truncated plurigaussian method to delineate hydrofacies distribution in heterogeneous aquifers. The 19th Int. Conf. on Water Resour. (CMWR), 952–959.
    [Google Scholar]
  23. Perulero Serrano, R., Guadagnini, L., Riva, M., Giudici, M. and Guadagnini, A.
    [2014] Impact of two geostatistical hydro-facies simulation strategies on head statistics under non-uniform groundwater flow. J. of Hydrol., 508, 355–.
    [Google Scholar]
  24. Woolf, B.
    [1957] The log likelihood ratio test (the G-test). Ann. of human genet., 21(4), 397–409.
    [Google Scholar]
  25. Xu, C., Dowd, P.A., Mardia, K.V. and Fowell, R.J.
    [2006] A flexible true plurigaussian code for spatial facies simulations. Comput. & Geosci., 32(10), 1629–1645, doi:10.1016/j.cageo.2006.03.002.
    https://doi.org/10.1016/j.cageo.2006.03.002 [Google Scholar]
  26. Zelen, M. and Severo, N.C.
    [2012] Probability functions. In: Abramowitz, M. and Stegun, I.A. (Eds.) Handb. of Math. Funct.: with Formulas, Graphs, and Math. Tables. Courier Dover Publications, 925–995.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/papers/10.3997/2214-4609.20141830
Loading
/content/papers/10.3997/2214-4609.20141830
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error