1887

Abstract

Summary

We apply elastic time-domain 2D full waveform inversion (FWI) to a near surface SH-wave data set recorded in the village Cachtice in northwestern Slovakia. Aim of the seismic survey was the detection of possible basement structures. The recorded data, consisting of 42 shots and receivers distributed along a 21 m long profile, covers a wide frequency range from 5 Hz to 100 Hz with high signal-to-noise ratio well suited for FWI. In addition to the direct SH/Love-wave a distinct refracted wave is visible. The trend of the first arrivals suggests an approximately 1D velocity gradient in the subsurface. Therefore a 1D initial model for the FWI is estimated by the Wiechert-Herglotz method. For the initial density model a similar gradient medium is assumed. The 2D FWI is based on the global correlation norm as objective function in combination with sequential frequency inversion. The final FWI S-wave velocity and density models reveal a heterogeneous underground with a prominent low-velocity weathering layer and isolated highvelocity anomalies. The structures of the density model correlate well with the velocity model.

Loading

Article metrics loading...

/content/papers/10.3997/2214-4609.201413538
2015-06-01
2024-04-20
Loading full text...

Full text loading...

References

  1. Batemann, H.
    [1910] Die Lösung der Integralgleichung, welche die Fortpflanzungsgeschwindigkeit einer Erdbebenwelle im Inneren der Erde mit den Zeiten verbindet, die die Störung braucht, um zu verschiedenen Stationen auf der Erdoberfläche zu gelangen. Physikal. Zeitschr., 11, 96–99.
    [Google Scholar]
  2. Bretaudeau, F., Brossier, R., Leparoux, D., Operto, S., Abraham, O. and Virieux, J.
    [2013] 2D elastic full waveform imaging of the near surface : Application to a physical scale model. Near Surface Geophysics, 11(3), 307–316.
    [Google Scholar]
  3. Brossier, R.
    [2011] Two-dimensional frequency-domain visco-elastic full waveform inversion: Parallel algorithms, optimization and performance. Computers & Geosciences, 37(4), 444 – 455.
    [Google Scholar]
  4. Choi, Y. and Alkhalifah, T.
    [2012] Application of multi-source waveform inversion to marine streamer data using the global correlation norm. Geophysical Prospecting, 60, 748–758.
    [Google Scholar]
  5. Dokter, E.
    [2015] 2D SH-waveform inversion for near-surface characterization: A case study from Slovakia. Diploma thesis, Kiel University.
    [Google Scholar]
  6. Forbriger, T., Groos, L. and Schäfer, M.
    [2014] Line-source simulation for shallow-seismic data. Part 1: theoretical background. Geophysical Journal International, 198(3), 1387–1404.
    [Google Scholar]
  7. Groos, L.
    [2013] 2D full waveform inversion of shallow seismic Rayleigh waves. Ph.D. thesis, Karlsruhe Institute of Technology. Available at http://nbn-resolving.de/urn:nbn:de:swb:90-373206.
    [Google Scholar]
  8. Groos, L., Schäfer, M., Forbriger, T. and Bohlen, T.
    [2014] The role of attenuation in 2D full-waveform inversion of shallow-seismic body and Rayleigh waves. Geophysics, 79(6), R247–R261.
    [Google Scholar]
  9. Herglotz, G.
    [1907] Über das Benndorf’sche Problem der Fortpflanzungsgeschwindigkeit der Erdbebenstrahlen. Physikal. Zeitschr., 8, 145–147.
    [Google Scholar]
  10. Horn, R., Rabbel, W. and Volk, L.
    [2008] Anwendbarkeit geophysikalischer, bodenphysikalischer und landtechnischer Methoden zur Bestimmung von flächenhaften Bodenverdichtungen auf landwirtschaftlich genutzten Flächen. Tech. rep., CAU Kiel, Institut für Pflanzenernährung und Bodenkunde, Institut für Geowissenschaften, Abt.: Geophysik und Fachhochschule Südwestfalen, Hochschule für Technik und Wirtschaft, Fachbereich Agrarwirtschaft Soest.
    [Google Scholar]
  11. Köhn, D., De Nil, D., Kurzmann, A., Przebindowska, A. and Bohlen, T.
    [2012] On the influence of model parametrization in elastic full waveform tomography. Geophysical Journal International, 191(1), 325–345.
    [Google Scholar]
  12. Nocedal, J. and Wright, S.
    [2006] Numerical Optimization. Springer, New York.
    [Google Scholar]
  13. Romdhane, A., Grandjean, G., Brossier, R., Rejiba, F., Operto, S. and Virieux, J.
    [2011] Shallow-structure characterization by 2D elastic full-waveform inversion. Geophsics, 76(3), R81–R93.
    [Google Scholar]
  14. Schäfer, M.
    [2014] Application of full-waveform inversion to shallow-seismic Rayleigh waves on 2D structures. Ph.D. thesis, Karlsruhe Institute of Technology. Available at http://nbn-resolving.org/urn:nbn:de:swb:90-419221.
    [Google Scholar]
  15. Schäfer, M., Groos, L., Forbriger, T. and Bohlen, T.
    [2014] Line-source simulation for shallow-seismic data. Part 2: full-waveform inversion – a synthetic 2-D case study. Geophysical Journal International, 198(3), 1405–1418.
    [Google Scholar]
  16. Schön, J.
    [1996] Physical Properties of Rocks: Fundamentals and Principles of Petrophysics. Pergamon.
    [Google Scholar]
  17. Tran, K., McVay, M., Faraone, M. and Horhota, D.
    [2013] Sinkhole detection using 2D full seismic waveform tomography. Geophysics, 78(5), R175–R183.
    [Google Scholar]
  18. Tran, K.T. and McVay, M.
    [2012] Site characterization using Gauss-Newton inversion of 2-D full seismic waveform in the time domain. Soil Dynamics and Earthquake Engineering, 43(0), 16 – 24.
    [Google Scholar]
  19. Virieux, J.
    [1984] SH-wave propagation in heterogeneous media: Velocity-stress finite-difference method. Geophysics, 49(11), 1933–1957.
    [Google Scholar]
  20. Wiechert, E. and Geiger, L.
    [1901] Bestimmung des Weges von Erdbebenwellen im Erdinneren. Physikal. Zeitschr., 11, 394–411.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/papers/10.3997/2214-4609.201413538
Loading
/content/papers/10.3997/2214-4609.201413538
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error