Home

Quick Links

Search

 
Analysis of time-lapse travel-time and amplitude changes to assess reservoir compartmentalizationNormal access

Authors: Y.-X. He, D.A. Angus, R.A. Clark and M.W. Hildyard
Journal name: Geophysical Prospecting
Issue: Vol 64, No 1, January 2016 pp. 54 - 67
DOI: 10.1111/1365-2478.12250
Organisations: Wiley
Language: English
Info: Article, PDF ( 1.71Mb )

Summary:
Fluid depletion within a compacting reservoir can lead to significant stress and strain changes and potentially severe geomechanical issues, both inside and outside the reservoir. We extend previous research of time-lapse seismic interpretation by incorporating synthetic near-offset and full-offset common-midpoint reflection data using anisotropic ray tracing to investigate uncertainties in time-lapse seismic observations. The time-lapse seismic simulations use dynamic elasticity models built from hydro-geomechanical simulation output and a stress-dependent rock physics model. The reservoir model is a conceptual two-fault graben reservoir, where we allow the fault fluid-flow transmissibility to vary from high to low to simulate noncompartmentalized and compartmentalized reservoirs, respectively. The results indicate time-lapse seismic amplitude changes and travel-time shifts can be used to qualitatively identify reservoir compartmentalization. Due to the high repeatability and good quality of the time-lapse synthetic dataset, the estimated travel-time shifts and amplitude changes for near-offset data match the true model subsurface changes with minimal errors. A 1D velocity–strain relation was used to estimate the vertical velocity change for the reservoir bottom interface by applying zero-offset time shifts from both the near-offset and full-offset measurements. For near-offset data, the estimated P-wave velocity changes were within 10% of the true value. However, for full-offset data, time-lapse attributes are quantitatively reliable using standard time-lapse seismic methods when an updated velocity model is used rather than the baseline model.

Download
Back to the article list