1887

Abstract

Summary

The thermal properties (thermal conductivity, volumetric heat capacity, anisotropy coefficient, heterogeneity factor) of 129 core plugs from a well crossed the bazhen svite were studied with the optical scanning technique. Relationship established between the thermal properties and total organic carbon demonstrates a close correlation between the thermal conductivity and total organic carbon. It was established that total organic carbon influence on the thermal conductivity dominates, when a porosity influence on the thermal conductivity, that is essential for other terrigenous and carbonate rocks, is suppressed. Thermal anisotropy coefficient correlates well with the thermal conductivity and total organic carbon also. Thermal heterogeneity factor increases with a decrease in total organic content that characterizes texture and structure of the bazhen svite rocks. The results demonstrate that thermal conductivity data inferred easily with high precision with application of the non-destructive non-contact optical scanning technique application provides quick and representative estimation of the total organic carbon from numerous measurements on full size cores. Such approach can be implemented within a thermal core logging when the measurements of thermal conductivity, volumetric heat capacity, thermal anisotropy coefficient, and thermal heterogeneity factor are performed from continuous thermal profiling on all full size cores recovered from a well.

Loading

Article metrics loading...

/content/papers/10.3997/2214-4609.201413947
2015-09-07
2024-04-20
Loading full text...

Full text loading...

References

  1. ПоповЮ.А., ЧехонинЕ.М., ПаршинА.В., ПоповЕ.Ю., МиклашевскийД.Е.
    2013. Новая аппаратурно-методическая база тепловой петрофизики как средство повышения эффективности добычи тяжелых нефтей. Нефть. Газ. Новации.4, 52–58.
    [Google Scholar]
  2. Popov Yu. and MandelA.
    1998. Geothermal study of anisotropic rock masses. Izvestiya. Physics of the Solid Earth. 1998. 34 (11), 903–915.
    [Google Scholar]
  3. PopovYu., BerezinV., Solov’yovG., RomushkevichR., KoroctelevV., KulikovI.
    1987. Thermal conductivity of minerals. Izvestia, Physics of Solid Earth, 23 (3), 245–253.
    [Google Scholar]
  4. ПоповЮ.А., РабеФ., БангураА.
    1992. Анализ адекватности теоретической и экспериментальной моделей метода сканирования при измерениях теплопроводности минералов, пород, руд. Геология и разведка, 6, 120–129.
    [Google Scholar]
  5. ClauserC.
    2006. Geothermal Energy. In: К.Heinloth (ed), Landolt-Börnstein, Group VIII: Advanced Materials and Technologies, Vol. 3: Energy Technologies, Subvol. C: Renewable Energies, Springer Verlag, Heidelberg-Berlin, 493–604.
    [Google Scholar]
  6. PopovY., TertychnyiV., RomushkevichR., KorobkovD., PohlJ.
    2003. Interrelations between thermal conductivity and other physical properties of rocks: experimental data. Pure and Applied Geophysics. 160, 1137–1161.
    [Google Scholar]
  7. DuchkovA.D., SokolovaL.S., RodyakinS.V., ChernyshP.S.
    2014. Thermal conductivity of the sedimentary-cover rocks of the West Siberian Plate in relation to their humidity and porosity. Russian Geology and Geophysics, 55, 784–792.
    [Google Scholar]
  8. ПоповЮ.А., РомушкевичР. А., ПоповЕ. Ю.
    1997. Теплофизические исследования пород разреза Тюменской сверхглубокой скважины. В кн. Тюменская сверхглубокая скважина. Изд.КамНИИКИГС и ГНПП “Недра”, Пермь, 76–92.
    [Google Scholar]
  9. PopovY., TertychnyiV., RomushkevichR., KorobkovD., PohlJ.
    2003. Interrelations between thermal conductivity and other physical properties of rocks: experimental data. Pure and Applied Geophysics. 160, 1137–1161.
    [Google Scholar]
  10. BayukI., PopovYu., ParshinA.
    2011. A new powerful tool for interpreting and predicting in reservoir geophysics: theoretical modeling as applied to laboratory measurements of thermal properties. Proceedings, International Symposium of the Society of Core Analysts, Austin, Texas, USA. SCA2011–39, 1/1 – 1/12.
    [Google Scholar]
  11. ПоповЕ.Ю., ЧехонинЕ.М., СафоновС.С., ПоповЮ.А., РомушкевичР.А., ГерасимовИ.В., УрсеговС.О., ГурбатоваИ.П.
    2014. Результаты доизучения геологического строения пермо-карбоновой залежи Усинского месторождения путем непрерывного теплофизического профилирования керна. Труды конференции EAGE «Геомодель-2014».
    [Google Scholar]
http://instance.metastore.ingenta.com/content/papers/10.3997/2214-4609.201413947
Loading
/content/papers/10.3997/2214-4609.201413947
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error