1887
Volume 63, Issue 6
  • E-ISSN: 1365-2478

Abstract

ABSTRACT

To advance and optimize secondary and tertiary oil recovery techniques, it is essential to know the areal propagation and distribution of the injected fluids in the subsurface. We investigate the applicability of controlled‐source electromagnetic methods to monitor fluid movements in a German oilfield (Bockstedt, onshore Northwest Germany) as injected brines (highly saline formation water) have much lower electrical resistivity than the oil within the reservoir. The main focus of this study is on controlled‐source electromagnetic simulations to test the sensitivity of various source–receiver configurations. The background model for the simulations is based on two‐dimensional inversion of magnetotelluric data gathered across the oil field and calibrated with resistivity logs. Three‐dimensional modelling results suggest that controlled‐source electromagnetic methods are sensitive to resistivity changes at reservoir depths, but the effect is difficult to resolve with surface measurements only. Resolution increases significantly if sensors or transmitters can be placed in observation wells closer to the reservoir. In particular, observation of the vertical electric field component in shallow boreholes and/or use of source configurations consisting of combinations of vertical and horizontal dipoles are promising. Preliminary results from a borehole‐to‐surface controlled‐source electromagnetic field survey carried out in spring 2014 are in good agreement with the modelling studies.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.12322
2015-09-27
2024-04-19
Loading full text...

Full text loading...

References

  1. AndréisD. and MacGregorL.2011. Using CSEM to monitor production from a complex 3D gas reservoir — A synthetic case study. Leading Edge30(9), 1070–1079.
    [Google Scholar]
  2. BeckenM. and BurkhardtH.2004. An ellipticity criterion in magnetotelluric tensor analysis. Geophysical Journal International159, 69–82.
    [Google Scholar]
  3. BetzD., FührerF., GreinerG. and PleinE.1987. Evolution of the Lower Saxony Basin. Tectonophysics137, 127–170.
    [Google Scholar]
  4. BhuyianA.H., LandrøM. and JohansenS.E.2012. 3D CSEM modelling and time‐lapse sensitivity analysis for subsurface CO2 storage. Geophysics77(5), E343–E355.
    [Google Scholar]
  5. CaldwellT.G., BibbyH.M. and BrownC.2004. The magnetotelluric phase tensor. Geophysical Journal International158, 457–469.
    [Google Scholar]
  6. ChenX.2008. Filterung von geophysikalischen Zeitreihen mit periodisch auftretenden multifrequenten Störsignalen. Diploma thesis, Technische Universität Berlin.
  7. CommerM., HoverstenG.M. and UmE.S.2015. Transient RDTD earth modelling over steel infrastructure. Geophysical Prospecting in press.
    [Google Scholar]
  8. ConstableS.2010. Ten years of marine CSEM for hydrocarbon exploration. Geophysics75(5), A67–A81.
    [Google Scholar]
  9. CuevasN.2014. Energizing a bipole casing electromagnetic source – sensitivity analysis. 76th EAGE Conference & Exhibition, Amsterdam, The Netherlands, Expanded Abstracts.
  10. GirardJ.‐F., CoppoN., RohmerJ., BourgeoisB., NaudetV. and Schmidt‐HattenbergerC.2011. Time‐lapse CSEM monitoring of the Ketzin (Germany) CO2 injection using 2xMAM configuration. Energy Procedia4, 3322–3329.
    [Google Scholar]
  11. GrayverA., StreichR. and RitterO.2014. 3D inversion and resolution analysis of land‐based CSEM data from the Ketzin storage formation. Geophysics79(2), E101–E114.
    [Google Scholar]
  12. HeZ., LiuX. and ZhouH.2005. Mapping reservoir boundary by borehole‐to‐surface TFEM: Two case studies. The Leading Edge24(9), 898–900.
    [Google Scholar]
  13. HibbsA.D., PetrovT.R., PendletonJ., AgundesA., KoubaS., HallT.et al. 2014. Advances in electromagnetic survey instrumentation and the use of a cased borehole for imaging a deep formation. 76th EAGE Conference & Exhibition, Amsterdam, The Netherlands, Expanded Abstracts.
    [Google Scholar]
  14. HoffmannN., GengesbachL., FriedrichsB. and BrinkH.‐J.2008. The contribution of magnetotellurics to an improved understanding of the geological evolution of the North German Basin – review and new results. Z. dt. Ges. Geowiss.159(9), 591–606.
    [Google Scholar]
  15. HoverstenG.M., NewmanG.A., MorrisonH.F., GasperikovaE. and BergJ.‐I.2001. Reservoir characterization using crosswell electromagnetic inversion: A feasibility study for the Snorre field, North Sea. Geophysics66(4), 1177–1189.
    [Google Scholar]
  16. KockelF., WehnerH. and GerlingP.1994. Petroleum systems of the Lower Saxony Basin, Germany. American Association of Petroleum Geologists Memoirs60, 573–586.
    [Google Scholar]
  17. KringsT.2007. The influence of robust statistics, remote reference, and horizontal magnetic transfer functions on data processing in magnetotellurics. Diploma thesis, Westfälische Wilhelms‐Universität Münster.
    [Google Scholar]
  18. LeonhardtB., VisserF., LessnerE., WenzkeB. and SchmidtJ.2011. From flask to field – The long road to development of a new polymer. 16th European Symposium on Improved Oil Recovery Cambridge, UK, Expanded Abstracts, B05.
    [Google Scholar]
  19. LienM. and MannsethT.2008. Sensitivity study of marine CSEM data for reservoir production monitoring. Geophysics73(4), F151–F163.
    [Google Scholar]
  20. MarsalaA.F., Al‐BualiM., AliZ., MaS.M., HeZ., BiyanT.et al. 2011. First pilot of borehole to surface electromagnetic in Saudi Arabia – A new technology to enhance reservoir mapping and monitoring. 73rd EAGE Conference & Exhibition incorporating SPE EUROPEC, Vienna, Austria, Expanded Abstract.
    [Google Scholar]
  21. Metronix
    Metronix . 2004. MFS‐07 Product Manual Version 1.0. Metronix Measurement Instruments and Electronics Ltd.
  22. OldenburgD., HaberE. and ShekhtmanR.2013. Three‐dimensional inversion of multisource time domain electromagnetic data. Geophysics78(1), E47–E57.
    [Google Scholar]
  23. OrangeA., KeyK. and ConstableS.2009. The feasibility of reservoir monitoring using time‐lapse marine CSEM. Geophysics74(2), F21–F29.
    [Google Scholar]
  24. RitterO., JungeA. and DawesG.1998. New equipment and processing for magnetotelluric remote reference observations. Geophysical Journal International132, 535—548.
    [Google Scholar]
  25. RocroiJ.P. and KoulikovA.V.1985. The use of vertical line sources in electric prospecting for hydrocarbon. Geophysical Prospecting33, 138–152.
    [Google Scholar]
  26. RodiW. and MackieR.L.2001. Nonlinear conjugate gradients algorithm for 2‐D magnetotelluric inversion. Geophysics66, 174–187.
    [Google Scholar]
  27. SchallerA., HunzikerJ., StreichR. and DrijkoningenG.2014. Sensitivity of the near‐surface vertical electric field in land controlled‐source electromagnetic monitoring. 2014 SEG Annual Meeting, Denver, USA, Expanded Abstracts, 838–843.
  28. StreichR.2009. 3D finite‐difference frequency‐domain modeling of controlled‐source electro‐magnetic data: Direct solution and optimization for high accuracy. Geophysics74(5), F95–F105.
    [Google Scholar]
  29. StreichR. and BeckenM.2011. Electromagnetic fields generated by finite‐length wire sources: comparison with point dipole solutions. Geophysical Prospecting59, 361–374.
    [Google Scholar]
  30. StreichR., BeckenM. and RitterO.2010. Imaging of CO2 storage sites, geothermal reservoirs, and gas shales using controlled‐source magnetotellurics: Modeling studies. Chemie der Erde70(S3), 63–75.
    [Google Scholar]
  31. StreichR., BeckenM. and RitterO.2013. Robust processing of noisy land‐based controlled‐source electromagnetic data. Geophysics78(5), E237–E247.
    [Google Scholar]
  32. SutarnoD. and VozoffK.1991. Phase‐smoothed robust M‐estimation of magnetotelluric impedance functions. Geophysics56(12), 1999–2007.
    [Google Scholar]
  33. SwidinskyA., EdwardsR.N. and JegenM.2013. The marine controlled source electromagnetic response of a steel borehole casing: applications for the NEPTUNE Canada gas hydrate observartory. Geophysical Prospecting61, 842–856.
    [Google Scholar]
  34. TakacsE. and HursánE.1998. A nonconventional geoelectric method using EM field generated by steel‐casing excitation. 68th SEG meeting, New Orleans, USA, Expanded Abstracts, 452–455.
  35. VilamajóE., QueraltP., LedoJ. and MarcuelloA.2013. Feasibility of monitoring the Hontomín (Burgos, Spain) CO2 storage site using a deep EM source. Surveys in Geophysics34, 441–461.
    [Google Scholar]
  36. WaitJ.R.1962. Theory of Magneto‐Telluric fields. Journal of Research of the National Bureau of Standards – D. Radio Propagation66D(5).
    [Google Scholar]
  37. WeckmannU., MaguniaA. and RitterO.2005. Effective noise separation for magnetotelluric single site data processing using a frequency domain selection scheme. Geophysical Journal International161(3), 635–652.
    [Google Scholar]
  38. WeissC.J. and ConstableS.2006, Mapping thin resistors and hydrocarbons with marine EM methods, Part II — Modeling and analysis in 3D. Geophysics71(6), G321–G332.
    [Google Scholar]
  39. WiltM.J., AlumbaughD.L., MorrisonH.F., BeckerA., LeeK.H. and Descz‐PanM.1995. Crosswell electromagnetic tomography: System design considerations and field results. Geophysics60(3), 871–885.
    [Google Scholar]
  40. WiriantoM., MulderW.A. and SlobE.C.2010. A feasibility study of land CSEM reservoir monitoring in a complex 3‐D model. Geophysical Journal International181, 741–755.
    [Google Scholar]
  41. WrightD., ZiolkowskiA. and HobbsB.2002. Hydrocarbon detection and monitoring with a multicomponent transient electromagnetic (MTEM) survey. The Leading Edge21(9), 852–864.
    [Google Scholar]
  42. YangW., Torres‐VerdínC., HouJ. and ZhangZ.2009. 1D subsurface electromagnetic fields excited by energized steel‐casing. Geophysics74(4), E159–E180.
    [Google Scholar]
  43. ZhdanovM.S., EndoM., BlackN., SpanglerL., FairweatherS., GibbsA., EiskampG.A. and WillR.2013. Electromagnetic monitoring of CO2 sequestration in deep reservoirs. First Break31, 85–92.
    [Google Scholar]
  44. ZieglerP.A.1987. Late Cretaceous and Cenozoic intra‐plate compressional deformations in the Alpine foreland – a geodynamic model. Tectonophysics137, 389–420.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/1365-2478.12322
Loading
/content/journals/10.1111/1365-2478.12322
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): Electromagnetics; Modelling; Monitoring; Numerical study; Resistivity; Time lapse

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error