1887

Abstract

We present an efficient multiscale (MS) gradient computation that is suitable for reservoir management studies involving optimization techniques for, e.g., computer-assisted history matching or life-cycle production optimization. The general, algebraic framework allows for the calculation of gradients using both the Direct and Adjoint derivative methods. The framework also allows for the utilization of any MS formulation in the forward reservoir simulation that can be algebraically expressed in terms of a restriction and a prolongation operator. In the implementation, extra partial derivative information required by the gradient methods is computed via automatic differentiation. Numerical experiments demonstrate the accuracy of the method compared against those based on fine-scale simulation (industry standard).

Loading

Article metrics loading...

/content/papers/10.3997/2214-4609.201601891
2016-08-29
2024-03-28
Loading full text...

Full text loading...

http://instance.metastore.ingenta.com/content/papers/10.3997/2214-4609.201601891
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error