1887
Volume 65, Issue 2
  • E-ISSN: 1365-2478

Abstract

ABSTRACT

Current models for unconformity‐associated uranium deposits predict fluid flow and ore deposition along reactivated faults in >1.76 Ga basement beneath Mesoproterozoic siliciclastic basins. In frontier regions such as the Thelon Basin in the Kivalliq region of Nunavut, little is known about the sub‐basin distribution of units and structures, making exploration targeting very tenuous. We constructed a geological map of the basement beneath the unconformity by extrapolating exposed features into the subsurface. The new map is constrained by detailed geological, geophysical, and rock property observations of outcrops adjacent to the basin and by aeromagnetic and gravity data over the geophysically transparent sedimentary basin. From rock property measurements, it is clear that the diverse magnetic and density characteristics of major rock packages provide quantitative three‐dimensional constraints. Gravity profiles forward modelled in four cross sections define broad synforms of the Amer Belt and Archean volcanic rocks that are consistent with the structural style outside the basin. Major lithotectonic entities beneath the unconformity include: supracrustal rocks of the Archean Woodburn Lake group and Marjorie Hills meta sedimentary gneiss and associated mixed granitoid and amphibolitic gneiss; the Amer Mylonite Zone and inferred mafic intrusions oriented parallel and sub‐parallel; other igneous intrusions of 2.6 Ga, 1.83 Ga, and 1.75 Ga vintage; and the <2.3 Ga to >1.84 Ga Amer Group. Four main brittle regional fault arrays (040°–060°, 075°–90°, 120°, and 150°) controlled development and preservation of the basin. The reactivated intersections of such faults along fertile basement units such as the Rumble assemblage, Marjorie Hills assemblage, Nueltin igneous rocks, and Pitz formation are the best targets for uranium exploration.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.12430
2016-08-08
2024-04-19
Loading full text...

Full text loading...

References

  1. AnandA., JeffersonC.W., PehrssonS.J., WhiteJ.C., McEwanB.J., BethuneK.et al. 2012. History of reactivated fault systems in the northeast Thelon Basin region: regional to local controls on basin development and hydrothermal fluid flow for uranium. In: Geological Association of Canada–Mineralogical Association of Canada Joint Annual Meeting, St. John's, Canada, May 2012, Abstract Volume, pp. 4.
    [Google Scholar]
  2. BermanR.G., PercivalJ.A., HarrisJ.R., DavisW.J., McCurdyM., NormandeauP.et al. 2013. Geo‐Mapping Frontiers′ Chantrey Project: Reconnaissance Geology and Economic Potential of a Transect Across the Thelon Tectonic Zone, Queen Maud Block, and Adjacent Rae Craton, Open File 7394. Geological Survey of Canada.
    [Google Scholar]
  3. BlakelyR.J. and SimpsonR.W.1986. Approximating edges of source bodies from magnetic or gravity anomalies. Geophysics5, 1494–1498.
    [Google Scholar]
  4. BoltonT.E. and NowlanG.S.1979. A Late Ordovician fossil assemblage from an outlier north of Aberdeen Lake, District of Keewatin. Geological Survey of Canada Bulletin321, 1–26.
    [Google Scholar]
  5. CalhounL., WhiteJ.C., JeffersonC.W. and PattersonJ.2014. Integrated Geodatabase Study of the Complexly Deformed U‐hosting Paleoproterozoic Amer Group, Nunavut, Open File7429. Geological Survey of Canada.
    [Google Scholar]
  6. CooperG.R.J. and CowanD.R.2006. Enhancing potential field data using filters based on the local phase. Computers and Geosciences32, 1585–1591.
    [Google Scholar]
  7. DavisW.J., BermanR.G., NadeauL. and PercivalJ.A.2014. U‐Pb Zircon Geochronology of a Transect Across the Thelon Tectonic Zone, Queen Maud Region, and Adjacent Rae Craton, Kitikmeot Region, Nunavut, Canada, Open File 7652. Geological Survey of Canada.
    [Google Scholar]
  8. DavisW.J., GallQ., JeffersonC.W. and RainbirdR.H.2011. Diagenetic fluorapatite in the Paleoproterozoic Thelon Basin: structural‐stratigraphic context, in situ ion microprobe U‐Pb ages and fluid flow history. Bulletin of the Geological Society of America123, 1056–1073.
    [Google Scholar]
  9. FuchsH., HilgerW. and ProsserE.1986. Geology and exploration history of the Lone Gull property. In: Uranium Deposits of Canada, Canadian Institute of Mining and Metallurgy, Special Vol. 33, pp. 286–292.
    [Google Scholar]
  10. HadlariT., RainbirdR.H. and PehrssonS.J.2004. Geology, Schultz Lake, Nunavut, Open File 1839, 1 sheet, scale 1:250 000. Geological Survey of Canada.
    [Google Scholar]
  11. HoldenE.J., DentithM. and KovesiP.2008. Towards the automated analysis of regional aeromagnetic data to identify regions prospective for gold deposits. Computer & Geosciences34, 1505–1515.
    [Google Scholar]
  12. HunterR., LafranceB., LesperanceJ. and ZaluskiG.2012. The Qavvik‐Tatiggaq trend: an evolving unconformity‐related uranium corridor of the northeast Thelon Basin, Nunavut. In: Geological Association of Canada–Mineralogical Association of Canada Joint Annual Meeting, St. John's, May 2011, Abstract Volume, pp. 60.
    [Google Scholar]
  13. HunterR. and ZaluskiG.2011. Cameco's exploration for basement‐hosted unconformity uranium mineralization in the northeast Thelon Basin. In: Geological Association of Canada–Mineralogical Association of Canada–Society of Economic Geologists Joint Annual Meeting, Ottawa, May 2011, Abstract Volume, pp. 98–99.
    [Google Scholar]
  14. JeffersonC.W., PehrssonS., PetersonT., ChorltonL., DavisW., KeatingP.et al. 2011. Northeast Thelon Region Geoscience Framework ‐ New Maps and Data for Uranium in Nunavut, Open File 6949, 1 sheet. Geological Survey of Canada.
    [Google Scholar]
  15. JeffersonC.W., PetersonT., TschirhartV., DavisW., ScottJ.M.J., ReidK.et al. 2013. LIPs and Proterozoic uranium (U) Deposits of the Canadian Shield, Open File 7352, pp. 56. Geological Survey of Canada.
    [Google Scholar]
  16. JeffersonC.W., ThomasD.J., GandhiS.S., RamaekersP., DelaneyG., BrisbinD.et al. 2007a. Unconformity‐associated uranium deposits of the Athabasca Basin, Saskatchewan and Alberta. Geological Survey of Canada Bulletin588, 23–68.
    [Google Scholar]
  17. JeffersonC.W., ThomasD., QuirtD., MwenifumboC.J. and BrisbinD.2007b. Empirical models for Canadian unconformity associated uranium deposits. In: Proceedings of Exploration 07: Fifth Decennial International Conference on Mineral Exploration (ed. B.Milkereit ), pp. 741–769.
    [Google Scholar]
  18. JeffersonC.W., WhiteJ.C., YoungG.M., PattersonJ., TschirhartV., PehrssonS.J.et al. 2015. Outcrop and Remote Predictive Geology of the Amer Belt and Basement Beside and Beneath the Northeast Thelon Basin in Parts of NTS 66A, B, C, F, G and H, Nunavut, Open File 7242, 1 sheet. Geological Survey of Canada.
    [Google Scholar]
  19. LaRocqueA., LeblonB., HarrisJ., JeffersonC.W., TschirhartV. and ShelatY.2012. Use of multi‐beam RADARSAT‐2 dual‐polarization C‐HH and C‐HV imagery for surficial geology mapping in Nunavut, Canada. Canadian Journal of Remote Sensing38(3), 281–305.
    [Google Scholar]
  20. LeCheminantA.N., JacksonM.J., GalleyA.G., SmithS.L. and DonaldsonJ.A.1984. Early Proterozoic Amer Group, Beverly Lake map area, District of Keewatin. Geological Survey of Canada Paper84, 159–172.
    [Google Scholar]
  21. LiZ., BethuneK.M., ChiG., BosmanS.A. and CardC.D.2015. Topographic features of the sub‐Athabasca Group unconformity surface in the southeastern Athabasca Basin and their relationship to uranium ore deposits. Canadian Journal of Earth Sciences52, 903–920.
    [Google Scholar]
  22. McMartinI. and DredgeL.A.2005. History of Ice Flow in the Schultz Lake and Wager Bay Areas, Kivalliq Region, Nunavut, Current Research, Vol. B2, pp. 1–12. Geological Survey of Canada.
    [Google Scholar]
  23. MillerA.R. and LeCheminantA.N.1985. Geology and uranium metallogeny of Proterozoic supracrustal successions, central District of Keewatin, N.W.T. with comparisons to northern Saskatchewan. In: Geology of Uranium Deposits. Special Vol. 32 (eds T.I.I.Sibbald and W.Petruk ), pp. 167–185. Canadian Institute of Mining and Metallurgy.
    [Google Scholar]
  24. MillerA.R. and PetersonT.D.2015. Geology and Petrology of the Schultz Lake Intrusive Complex and Its Relationship to Unconformity Uranium Deposits: Schultz Lake, NTS 66‐A/5 and Aberdeen Lake, NTS 66‐B/8, Western Churchill Province, Open File 7858. Geological Survey of Canada.
    [Google Scholar]
  25. MillerH.G. and SinghV.1994. Potential field tilt–a new concept for location of potential field sources. Journal of Applied Geophysics32, 213–217.
    [Google Scholar]
  26. OvertonA.1979. Seismic reconnaissance survey of the Dubawnt Group, districts of Keewatin and Mackenzie. Current Research, Part B. Geological Survey of Canada Paper79, 397–400.
    [Google Scholar]
  27. PehrssonS.J., BermanR. and DavisW.J.2013. Paleoproterozoic orogenesis during Nuna aggregation: a case study of reworking of the Archean Rae craton, Woodburn Lake, Nunavut. Precambrian Research232, 167–188.
    [Google Scholar]
  28. PetersonT.D., JeffersonC.W. and AnandA.2015a. Geological setting and geochemistry of the ca. 2.6 Ga Snow Island Suite in the Central Rae Domain of the Western Churchill Province, Nunavut. Open File 7841, pp. 29. Geological Survey of Canada .
    [Google Scholar]
  29. PetersonT.D., PehrssonS., JeffersonC., ScottJ. and RainbirdR.2010. The Dubawnt Supergroup, Canada: a LIP with a LISP. December 2010 LIP of the Month [Online].
  30. PetersonT.D., ScottJ.M.J, LeCheminantA.N., JeffersonC.W. and PehrssonS.J.2015b. The Kivalliq Igneous Suite: Anorogenic bimodal magmatism at 1.75 Ga in the western Churchill Province, Canada. Precambrian Research262, 101–119.
    [Google Scholar]
  31. PetersonT.D., van BreemenO., SandemanH. and CousensB.2002. Proterozoic (1.85–1.75 Ga) igneous suites of the Western Churchill Province: granitoid and ultrapotassic magmatism in a reworked Archean hinterland. Precambrian Research119, 73–100.
    [Google Scholar]
  32. PetersonT., ScottJ.M.J., LeCheminantA., ChorltonL.B. and D'AoustB.2014. Geology and Digital Database, Tebesjuak Lake, NTS 65O. Canadian Geoscience Map 158, scale: 1:250,000. Geological Survey of Canada.
    [Google Scholar]
  33. PilkingtonM. and KeatingP.B.2009. The utility of potential field enhancements for remote predictive mapping. Canadian Journal of Remote Sensing35, S1–S11.
    [Google Scholar]
  34. PotterE.G. and WrightD.M.2015. TGI‐4 unconformity‐related uranium deposits synthesis: tools to aid deep exploration and refine the genetic model. In: Targeted Geoscience Initiative 4: Unconformity‐Related Uranium Systems. Open File 7791, (eds E.G.Potter and D.M.Wright ), pp. 1–13. Geological Survey of Canada.
    [Google Scholar]
  35. RainbirdR.H., DavisW.J., PehrssonS.J., WodickaN., RaynerN. and SkulskiT.2010. Early Paleoproterozoic supracrustal assemblages of the Rae domain, Nunavut, Canada: Intracratonic basin development during supercontinent break‐up and assembly. Precambrian Research181, 167–186.
    [Google Scholar]
  36. RobinsonS.V.J., PaulenR.C., JeffersonC.W., McClenaghanM.B., Layton‐MatthewsD., QuirtD.et al. 2014. Till Geochemical Signatures of the Kiggavik Uranium Deposit, Nunavut, Open File 7500, pp. 156. Geological Survey of Canada.
    [Google Scholar]
  37. ScottJ.M.J., PetersonT.D., DavisW.J., JeffersonC.W. and CousensB.L.2015. Petrology and geochronology of Paleoproterozoic intrusive rocks, Kiggavik uranium camp, Nunavut. Canadian Journal of Earth Sciences52(7), 495–518.
    [Google Scholar]
  38. TellaS.1984. Geology of the Amer Lake (NTS 66H), Deep Rose Lake (NTS 66G), and Parts of the Pelly Lake (NTS 66F) Map Areas, District of Keewatin, NWT, Open File 1043, 1 sheet, scale 1:250,000. Geological Survey of Canada.
    [Google Scholar]
  39. ThomasM.D.2012. Shallow Crustal Structure in Meadowbank River ‐ Tehek Lake Area: Insights from Gravity and Magnetic Modelling, Open File 7308, pp. 42. Geological Survey of Canada.
    [Google Scholar]
  40. TschirhartP., MorrisW.A. and JeffersonC.W.2013a. Geophysical Modeling of the Neoarchean Woodburn Lake and Paleoproterozoic Ketyet River Groups, and Plutonic Rocks in Central Schultz Lake Map Area, Nunavut. Geological Survey of Canada.
    [Google Scholar]
  41. TschirhartV., MorrisW.A., JeffersonC.W., KeatingP., WhiteJ.C. and CalhounL.2013b. 3D geophysical inversions of the north‐east Amer Belt and their relationship to structure. Geophysical Prospecting61, 547–560.
    [Google Scholar]
  42. TschirhartV., MorrisW.A. and JeffersonC.W.2013c. Framework geophysical modelling of granitoid vs. supracrustal basement to the northeast Thelon Basin around the Kiggavik uranium camp, Nunavut. Canadian Journal of Earth Sciences50, 667–677.
    [Google Scholar]
  43. TschirhartV., MorrisW.A. and JeffersonC.W.2014. Unconformity surface architecture of the northeast Thelon Basin, Nunavut, derived from integration of magnetic source depth estimates. Interpretation2, SJ263–SJ278.
    [Google Scholar]
  44. TschirhartV., PercivalJ.A. and JeffersonC.W.2015. Geophysical models of the Montresor metasedimentary belt and its environs, central Nunavut, Canada. Canadian Journal of Earth Sciences52(10), 833–845.
    [Google Scholar]
  45. TschirhartV., MorrisW.A. and OneschukD.2011a. Geophysical Series, Geophysical Compilation Project, Thelon Basin, Nunavut, NTS 66A, B, and Parts of 65N, O, P, 66C, F, G and H, Open File 6944. Geological Survey of Canada.
    [Google Scholar]
  46. TschirhartV., MorrisW.A., UgaldeH. and JeffersonC.W.2011b. Preliminary 3D Geophysical Modelling of the Aberdeen Sub‐Basin, Northeast Thelon Bain Region, Nunavut. Geological Survey of Canada.
    [Google Scholar]
  47. TurnerW.A., RichardsJ.P., NesbittB.E., MuchlenbachsK. and BiczokJ.L.2001. Proterozoic low‐sulfidation epithermal Au‐Ag mineralization in the Mallery Lake area, Nunavut, Canada. Mineralium Deposita36, 442–457.
    [Google Scholar]
  48. TurnerW.A., HeamanL.M. and CreaserR.A.2003. Sm–Nd fluorite dating of Proterozoic low‐sulfidation epithermal Au–Ag deposits and U–Pb zircon dating of host rocks at Mallery Lake, Nunavut, Canada. Canadian Journal of Earth Sciences40, 1789–1804.
    [Google Scholar]
  49. van BreemenO., PetersonT.D. and SandemanH.A.2005. U–Pb zircon geochronology and Nd isotope geochemistry of Proterozoic granitoids in the western Churchill Province: intrusive age pattern and Archean source domains. Canadian Journal of Earth Sciences42, 339–377.
    [Google Scholar]
  50. WijinsC., PerezC. and KowalczykP.2005. Theta map: Edge detection for magnetic data. Geophysics70, L39–L43.
    [Google Scholar]
  51. YoungG.M.1979. Geology of the Western Part of the Amer Belt (NTS Sheets 66G1, G2, H5, H6 and parts of G8 and H4), Keewatin. Western Mines Ltd. (operator), Mineral Assessment Report 081047, Department of Indian Northern Affairs, Yellowknife. 7 maps. (50000 scale), pp. 37.
http://instance.metastore.ingenta.com/content/journals/10.1111/1365-2478.12430
Loading
/content/journals/10.1111/1365-2478.12430
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): Gravity; Magnetics; Modelling; Thelon Basin; Uranium

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error