1887
Volume 14 Number 5
  • ISSN: 1569-4445
  • E-ISSN: 1873-0604

Abstract

ABSTRACT

In addition to geophysical applications from the near surface to a global scale, seismic full‐waveform inversion can be applied to ultrasonic data on the centimetre and decimetre scales for nondestructive testing of pavements, facades, plaster, sculptures, and load‐bearing structures such as pillars or core samples from boreholes, which can consist of geo‐materials and non‐geomaterials. Classical non‐destructive testing approaches are based on the inversion of body‐wave travel times to deduce P‐wave velocity models. In contrast, surface waves (especially Rayleigh waves) are well suited to quantify surficial alterations of material properties, e.g., due to weathering. Furthermore, ultrasonic measurements of test samples with known material parameters close the gap between synthetic tests or analytical solutions and field data applications to estimate the accuracy of seismic modelling and inversion codes. Due to the scale invariance of the problem, the full‐waveform‐inversion approaches developed on the ultrasonic scale are also applicable to larger scale geophysical problems. In this paper, we demonstrate the potential of two‐dimensional Rayleigh waveform inversion on the ultrasonic scale using two data examples acquired with a single‐fold, low‐coverage acquisition geometry. For a simple homogeneous Plexiglas block in a controlled laboratory environment, we discuss the accuracy of visco‐elastic Rayleigh wave modelling, as well as the sensitivity of two‐dimensional elastic full‐waveform inversion with respect to small data residuals. While the inversion is restricted to the recovery of the S‐wave velocity model, a passive visco‐elastic modelling approach with a homogeneous average ‐model is required in order to describe amplitude loss and dispersion of the Rayleigh wave. The applicability of this approach under field conditions is illustrated for an ultrasonic data example from the weathered sandstone facade of the Porta Nigra in Trier (Germany). In addition to a random medium resolution analysis of the full‐waveform‐inversion result, we particularly emphasise the importance of lateral model smoothing to mitigate small‐scale inversion artefacts and to avoid erroneous interpretations. The estimated two‐dimensional S‐wave velocity anomalies correlate well with prominent surficial weathering effects in the upper about 3 cm.

Loading

Article metrics loading...

/content/journals/10.3997/1873-0604.2016027
2016-05-01
2024-04-19
Loading full text...

Full text loading...

References

  1. AkiK. and RichardsP.1980. Quantitative Seismology. W.H. Freeman and Company.
    [Google Scholar]
  2. AurasM.2014. Charakterisierung von Schwarzen Krusten und anderen Oberflächenveränderungen der Sandsteine der Porta Nigra in Trier, IFS‐Bericht Nr. 47, pp. 15–28. Institut für Steinkonservierung e. V., Mainz.
    [Google Scholar]
  3. AurasM., MeierT., FehrM., ErcanE. and BilgiliF.2015. Anwendung von Rayleighwellen zur Untersuchung verwitterter Denkmaloberflächen aus Naturstein. In: 4. Kolloquium “Erhaltung von Bauwerken”, Tagungshandbuch, pp. 355–360. Technische Akademie Esslingen.
    [Google Scholar]
  4. BauerS., BeyerC., DethlefsenF., DietrichP., DuttmannR., EbertM. et al. 2013. Impacts of the use of the geological subsurface for energy storage: an investigation concept. Environmental Earth Sciences70(8), 3935–3943.
    [Google Scholar]
  5. Ben‐MenahemA. and SinghS.1981. Seismic Waves and Sources. Springer, Heidelberg.
    [Google Scholar]
  6. BlanchJ., RobertssonJ. and SymesW.1995. Modeling of a constant Q: methodology and algorithm for an efficient and optimally inexpensive viscoelastic technique. Geophysics60(1), 176–184.
    [Google Scholar]
  7. BleisteinN.1986. Two‐and‐one‐half dimensional in‐plane wave propagation. Geophysical Prospecting34, 686–703.
    [Google Scholar]
  8. BohlenT.2002. Parallel 3‐D viscoelastic finite‐difference seismic modelling. Computers & Geosciences28(8), 887–899.
    [Google Scholar]
  9. BohlenT., KuglerS., KleinG. and TheilenF.2004. 1.5‐D inversion of lateral variation of Scholte wave dispersion. Geophysics69(2), 330–344.
    [Google Scholar]
  10. BretaudeauF., BrossierR., LeparouxD., OpertoS., AbrahamO. and VirieuxJ.2013. 2D elastic full waveform imaging of the near surface: application to a physical scale model. Near Surface Geophysics11(3), 307–316.
    [Google Scholar]
  11. BrossierR.2011. Two‐dimensional frequency‐domain visco‐elastic full waveform inversion: parallel algorithms, optimization and performance. Computers & Geosciences37(4), 444–455.
    [Google Scholar]
  12. BunksC., SaleckF., ZaleskiS. and ChaventG.1995. Multiscale seismic waveform inversion. Geophysics60(5), 1457–1473.
    [Google Scholar]
  13. ButzerS., KurzmannA. and BohlenT.2013. 3D elastic full‐waveform inversion of small‐scale heterogeneities in transmission geometry. Geophysical Prospecting61(6), 1238–1251.
    [Google Scholar]
  14. CarcioneJ., KosloffD. and KosloffR.1988. Wave propagation simulation in a linear viscoacoustic medium. Geophysical Journal of the Royal Astronomical Society93, 393–407.
    [Google Scholar]
  15. ChoiY. and AlkhalifahT.2012. Application of multi‐source waveform inversion to marine streamer data using the global correlation norm. Geophysical Prospecting60(4), 748–758.
    [Google Scholar]
  16. DokterE.2015. 2D time domain waveform inversion of a near surface SH wave data set from Čachticeachtice, Slovakia.Diploma thesis, University of Kiel, Germany.
    [Google Scholar]
  17. DokterE., KöhnD., WilkenD. and RabbelW.2014. Application of elastic 2D waveform inversion to a near surface SH‐wave dataset. 76th EAGE Conference and Exhibition, Amsterdam, Netherlands, Expanded Abstracts, WE P01 12.
    [Google Scholar]
  18. ForbrigerT.2003a. Inversion of shallow‐seismic wavefields: I. Wavefield transformation. Geophysical Journal International153(3), 719–734.
    [Google Scholar]
  19. ForbrigerT.2003b. Inversion of shallow‐seismic wavefields: II. Inferring subsurface properties from wavefield transforms. Geophysical Journal International153(3), 735–752.
    [Google Scholar]
  20. ForbrigerT., GroosL. and SchäferM.2014. Line‐source simulation for shallow‐seismic data. Part 1: theoretical background. Geophysical Journal International198(3), 1387–1404.
    [Google Scholar]
  21. FriederichW. and DalkolmoJ.1995. Complete synthetic seismograms for a spherically symmetric earth by a numerical computation of the Green’s function in the frequency domain. Geophysical Journal International122(2), 537–550.
    [Google Scholar]
  22. GroosL.2013. 2D full waveform inversion of shallow seismic Rayleigh waves.Ph.D. thesis, Karlsruhe Institute of Technology, Germany.
    [Google Scholar]
  23. GroosL., SchäferM., ForbrigerT. and BohlenT.2014. The role of attenuation in 2D full‐waveform inversion of shallow‐seismic body and Rayleigh waves. Geophysics79(6), R247–R261.
    [Google Scholar]
  24. HeiderS.2014. 2D elastic full‐waveform tomography of vibro‐seismic data in crystalline host rock at the GFZ‐underground‐lab, Freiberg.Ph.D. thesis, Karlsruhe Institute of Technology, Germany.
    [Google Scholar]
  25. KöhlerW.1991. Untersuchungen zu Verwitterungsvorgängen an Carrara‐Marmor in Potsdam‐Sanssouci. Berichte zu Forschung und Praxis der Denkmalpflege in Deutschland, Steinschäden ‐Steinkonservierung2, 50–53.
    [Google Scholar]
  26. KöhnD., De NilD., KurzmannA., PrzebindowskaA. and BohlenT.2012. On the influence of model parametrization in elastic full waveform tomography, Geophysical Journal International191(1), 325–345.
    [Google Scholar]
  27. KöhnD., KurzmannA., De NilD. and GroosL.2014. DENISE ‐ User Manual.
    [Google Scholar]
  28. KöhnD., DokterE., WilkenD., De NilD. and RabbelW.2015. Near‐surface 2D SH‐waveform inversion—a case study from Slovakia. 77th EAGE Conference and Exhibition, Madrid, Spain, Expanded Abstracts, WS 10–C01.
    [Google Scholar]
  29. KomatitschD. and MartinR.2007. An unsplit convolutional perfectly matched layer improved at grazing incidence for the seismic wave equation. Geophysics72(5), 155–167.
    [Google Scholar]
  30. KomatitschD. and TrompJ.1999. Introduction to the spectral element method for three‐dimensional seismic wave propagation. Geophysical Journal International139(3), 806–822.
    [Google Scholar]
  31. KuglerS., BohlenT., ForbrigerT., BussatS. and KleinG.2007. Scholte‐wave tomography for shallow‐water marine sediments. Geophysical Journal International168(2), 551–570.
    [Google Scholar]
  32. KurzmannA.2012. Applications of 2D and 3D full waveform tomography in acoustic and viscoacoustic complex media. Ph.D. thesis, Karlsruhe Institute of Technology, Germany.
    [Google Scholar]
  33. KurzmannA., PrzebindowskaA., KöhnD. and BohlenT.2013. Acoustic full waveform tomography in the presence of attenuation: a sensitivity analysis. Geophysical Journal International195(2), 985–1000.
    [Google Scholar]
  34. LevanderA.1988. Fourth‐order finite‐difference P‐SV seismograms. Geophysics53(11), 1425–1436.
    [Google Scholar]
  35. LiuH., AndersonD. and KanamoriH.1976. Velocity dispersion due to anelasticity: implications for seismology and mantle composition. Geophysical Journal of the Royal Astronomical Society47, 41–58.
    [Google Scholar]
  36. MartinR. and KomatitschD.2009. An unsplit convolutional perfectly matched layer technique improved at grazing incidence for the viscoelastic wave equation, Geophysical Journal International179(1), 333–344.
    [Google Scholar]
  37. MasoniI., BrossierR., VirieuxJ. and BoelleJ.2013. Alternative misfit functions for FWI applied to surface waves. 75th EAGE Conference and Exhibition, London, U.K., Expanded Abstracts, Th E106–01.
    [Google Scholar]
  38. MasoniI., BrossierR., BoelleJ., MacquetM. and VirieuxJ.2014a. Robust full waveform inversion of surface waves. Seismic Technology11, 1–19.
    [Google Scholar]
  39. MasoniI., BrossierR., BoelleJ. and VirieuxJ.2014b. Generic gradient expression for robust FWI of surface waves. 76th EAGE Conference and Exhibition, Amsterdam, Netherlands, Expanded Abstracts, pp. Th E106–01.
    [Google Scholar]
  40. MeierT., DietrichK., StöckhertB. and HarjesH.‐P.2004. One‐dimensional models of shear wave velocity for the eastern Mediterranean obtained from the inversion of Rayleigh wave phase velocities and tectonic implications. Geophysical Journal International156(1), 45–58.
    [Google Scholar]
  41. MeierT., AurasM., ErkulE., FehrM., JepsenK., MildeC. et al. 2014. Physikalische Untersuchungen an der Porta Nigra ‐ Ultraschall‐Oberflächen‐Messungen und thermische Untersuchungen, IFS‐Bericht Nr. 47, pp. 50–62. Institut für Steinkonservierung e. V., Mainz, Germany.
    [Google Scholar]
  42. MétivierL., BrossierR., VirieuxJ. and OpertoS.2012. Toward Gauss–Newton and exact Newton optimization for full waveform inversion. 74th EAGE Conference & Exhibition, Copenhagen, Denmark, Expanded Abstracts.
    [Google Scholar]
  43. MorseP. and FeshbachH.1953. Methods of Theoretical Physics. McGraw‐Hill Book Company, New York.
    [Google Scholar]
  44. NguyenT., TranK. and McVayM.2016. Evaluation of unknown foundations using surface‐based full waveform tomography. Journal of Bridge Engineering21 (5).
    [Google Scholar]
  45. NocedalJ. and WrightS.2006. Numerical Optimization.Springer, New York.
    [Google Scholar]
  46. OpertoS., GholamiY., PrieuxV., RibodettiA., BrossierR., MétivierL. et al. 2013. A guided tour of multiparameter full‐waveform inversion with multicomponent data: From theory to practice. The Leading Edge32(9), 1040–1054.
    [Google Scholar]
  47. Pérez SolanoC.A., DonnoD. and ChaurisH.2014. Alternative waveform inversion for surface wave analysis in 2‐D media. Geophysical Journal International198(3), 1359–1372.
    [Google Scholar]
  48. PlessixR.‐E.2006. A review of the adjoint‐state method for computing the gradient of a functional with geophysical applications. Geophysical Journal International167(2), 495–503.
    [Google Scholar]
  49. Plessix R.‐E. and MulderW.A.2004. Frequency‐domain finite‐difference amplitude‐preserving migration. Geophysical Journal International157(3), 975–987.
    [Google Scholar]
  50. RayleighL.1885. On waves propagated along the plane surface of an elastic solid, Proceedings of the London Mathematical Society, s1–17(1), 4–11.
    [Google Scholar]
  51. RobertssonJ., BlanchJ. and SymesW.1994. Viscoelastic finite‐difference modeling. Geophysics59(9), 1444–1456.
    [Google Scholar]
  52. RobertssonJ.O.A.1996. A numerical free‐surface condition for elastic/ viscoelastic finite‐difference modeling in the presence of topography. Geophysics61, 1921–1934.
    [Google Scholar]
  53. RothM. and HolligerK.2000. The non‐geometric PS wave in high‐resolution seismic data: observations and modelling. Geophysical Journal International140(1), F5–F11.
    [Google Scholar]
  54. SchäferM.2014. Application of full‐waveform inversion to shallow‐seismic Rayleigh waves on 2D structures.Ph.D. thesis, Karlsruhe Institute of Technology, Germany.
    [Google Scholar]
  55. SchäferM., GroosL., ForbrigerT. and BohlenT.2014. Line‐source simulation for shallow‐seismic data. Part 2: full‐waveform inversion— a synthetic 2‐D case study. Geophysical Journal International198(3), 1405–1418.
    [Google Scholar]
  56. ShinC., YoonK., MarfurtK., ParkK., YangD., LimH. et al. 2001. Efficient calculation of a partial‐derivative wavefield using reciprocity for seismic imaging and inversion. Geophysics6, 1856–1863.
    [Google Scholar]
  57. ShippR. and SinghS.2002. Two‐dimensional full wavefield inversion of wide‐aperture marine seismic streamer data. Geophysical Journal International151, 325–344.
    [Google Scholar]
  58. SiegesmundS. and DürrastH.2011. Mechanical and physical properties of rocks. In: Stone in Architecture (eds. S.Siegesmund and R.Snethlage ), pp. 97–225. Springer, Berlin, Germany.
    [Google Scholar]
  59. TarantolaA.1988. Theoretical background for the inversion of seismic waveforms, including elasticity and attenuation. Pure and Applied Geophysics128(1–2), 365–399.
    [Google Scholar]
  60. TarantolaA.2005. Inverse Problem Theory, SIAM.
    [Google Scholar]
  61. TranK., McVayM., FaraoneM. and HorhotaD.2013. Sinkhole detection using 2D full seismic waveform tomography, Geophysics78(5), R175–R183.
    [Google Scholar]
  62. TranK.T. and McVayM.2012. Site characterization using Gauss‐Newton inversion of 2‐D full seismic waveform in the time domain. Soil Dynamics and Earthquake Engineering43(0), 16–24.
    [Google Scholar]
  63. VirieuxJ.1986. P‐SV wave propagation in heterogeneous media: velocity–stress finite‐difference method. Geophysics51(4), 889–901.
    [Google Scholar]
  64. VirieuxJ. and OpertoS.2009. An overview of full‐waveform inversion in exploration geophysics. Geophysics74(6), WCC1–WCC26.
    [Google Scholar]
  65. WatheletM.2008. An improved neighborhood algorithm: parameter conditions and dynamic scaling, Geophysical Research Letters35(9), L09301.
    [Google Scholar]
  66. WatheletM., JongmansD. and OhrnbergerM.2004. Surface wave inversion using a direct search algorithm and its application to ambient vibration measurements. Near Surface Geophysics2, 211–221.
    [Google Scholar]
  67. WilkenD. and RabbelW.2012. On the application of particle swarm optimization strategies on scholte‐wave inversion. Geophysical Journal International190(1), 580–594.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.3997/1873-0604.2016027
Loading
/content/journals/10.3997/1873-0604.2016027
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error