1887
Volume 65, Issue 4
  • E-ISSN: 1365-2478

Abstract

ABSTRACT

Under certain circumstances, seismic propagation within porous media may be associated to the conversion of mechanical energy to electromagnetic energy, which is known as a seismo‐electromagnetic phenomenon. The propagation of fast compressional ‐waves is more specifically associated to the manifestations of a seismoelectric field linked to the fluid flows within the pores. The analysis of seismoelectric phenomena, which requires the combination of the theory of electrokinetics and Biot's theory of poroelasticity, provides us with transfer function that links the coseismic seismoelectric field to the seismic acceleration . To measure the transfer function, we have developed an experimental setup enabling seismoelectric laboratory observation in unconsolidated quartz sand within the kilohertz range. The investigation focused on the impact of fluid conductivity and water saturation over the coseismic seismoelectric field. During the experiment, special attention was given to the accuracy of electric field measurements. We concluded that, to obtain a reliable estimate of the electric field amplitude, the dipole from which the potential differences are measured should be of much smaller length than the wavelength of the propagating seismic field. Time‐lapse monitoring of the seismic velocities and seismoelectric transfer functions were performed during imbibition and drainage experiments. In all cases, the quantitative analysis of the seismoelectric transfer function was in good agreement with theoretical predictions. While investigating saturation variations from full to residual water saturation, we showed that the ratio undergoes a switch in polarity at a particular saturation , which also implies a sign change of the filtration, traducing a reversal of the relative fluid displacement with respect to the frame. This sign change at critical saturation stresses a particular behaviour of the poroelastic medium: the dropping of the coseismic electric field to zero traduces the absence of relative pore/fluid displacements representative of a Biot dynamically compatible medium. We concluded from our experimental study in loose sand that the measurements of the coseismic seismoelectric coupling may provide information on fluid distribution within the pores and that the reversal of the seismoelectric field may be used as an indicator of the dynamically compatible state of the medium.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.12448
2016-10-11
2024-04-19
Loading full text...

Full text loading...

References

  1. AgeevaO., SvetovB., ShermanG. and ShipulinS.1999. E‐effect in rocks (data from laboratory experiments). Russian Geology and Geophysics c/c of Geologiia i Geofizika40(8), 1232–1237.
    [Google Scholar]
  2. AllègreV., LehmannF., AckererP., JouniauxL. and SailhacP.2012. A 1‐D modelling of streaming potential dependence on water content during drainage experiment in sand. Geophysical Journal International189(1), 285–295.
    [Google Scholar]
  3. BarrièreJ.2011. Atténuation et dispersion des ondes P en milieu partiellement saturé : approche expérimentale , Ph.D. thesis, Université de Pau et des Pays de l'Adour, France.
  4. BarrièreJ., BordesC., BritoD., SénéchalP. and PerroudH.2012. Laboratory monitoring of P waves in partially saturated sand. Geophysical Journal International191(3), 1152–1170.
    [Google Scholar]
  5. BeamishD.1999. Characteristics of near‐surface electrokinetic coupling. Geophysical Journal International137(1), 231–242.
    [Google Scholar]
  6. BiotM.1956a. Theory of propagation of elastic waves in a fluid‐saturated porous solid. i. low‐frequency range. Journal of Acoustical Society of America28(2), 168–178.
    [Google Scholar]
  7. BiotM.1956b. Theory of propagation of elastic waves in a fluid‐saturated porous solid. ii. higher frequency range. Journal of Acoustical Society of America28(2), 179–191.
    [Google Scholar]
  8. BiotM.1962. Generalized theory of acoustic propagation in porous dissipative media. Journal of Acoustical Society of America34(9), 1254–1264.
    [Google Scholar]
  9. BlauL. and StathamL.1936. Method and apparatus for seismic.
  10. BlockG. and HarrisJ.2006. Conductivity dependence of seismoelectric wave phenomena in fluid‐saturated sediments. Journal of Geophysical Research111, B01304.
    [Google Scholar]
  11. BordesC.2005. Etude expérimentale des phénomènes transitoires sismo‐électromagnétiques: Mise en oeuvre au Laboratoire Souterrain de Rustrel, Pays d'Apt . PhD thesis, Université de Grenoble 1, France.
  12. BordesC., JouniauxL., DietrichM., PozziJ. and GaramboisS.2006. First laboratory measurements of seismo‐magnetic conversions in fluid‐filled Fontainebleau sand. Geophysical Research Letters33, L01302.
    [Google Scholar]
  13. BordesC., JouniauxL., GaramboisS., DietrichM., PozziJ. and GaffetS.2008. Evidence of the theoretically predicted seismo‐magnetic conversion. Geophysical Journal International174(2), 489–504.
    [Google Scholar]
  14. BordesC., SénéchalP., BarrièreJ., BritoD., NormandinE. and JougnotD.2015. Impact of water saturation on seismoelectric transfer functions: a laboratory study of coseismic phenomenon. Geophysical Journal International200(3), 1317–1335.
    [Google Scholar]
  15. BrieA., PampuriF., MarsalaA. and MeazzaO.1995. Shear sonic interpretation in gas‐bearing sands, in SPE Annual Technical Conference, vol. 30595, pp. 701–710.
  16. BurridgeR. and VargasC.1979. The fundamental solution in dynamic poroelasticity. Geophysical Journal International58(1), 61–90.
    [Google Scholar]
  17. CadoretT., MarionD. and ZinsznerB.1995. Influence of frequency and fluid distribution on elastic wave velocities in partially saturated limestones. Journal of Geophysical Research: Solid Earth (1978–2012)100(B6), 9789–9803.
    [Google Scholar]
  18. CarcioneJ., PicottiS., GeiD. and RossiG.2006. Physics and seismic modeling for monitoring CO2 storage. Pure and Applied Geophysics163(1), 175–207.
    [Google Scholar]
  19. De RidderS., SlobE. and WapenaarK.2009. Interferometric seismoelectric Green's function representations. Geophysical Journal International178(3), 1289–1304.
    [Google Scholar]
  20. DoussanC. and RuyS.2009. Prediction of unsaturated soil hydraulic conductivity with electrical conductivity. Water Resources Research45(10).
    [Google Scholar]
  21. DupuisJ., ButlerK. and KepicA.2007. Seismoelectric imaging of the vadose zone of a sand aquifer. Geophysics72(6), A81.
    [Google Scholar]
  22. DupuyB. and StovasA.2013. Influence of frequency and saturation on avo attributes for patchy saturated rocks. Geophysics79(1), B19–B36.
    [Google Scholar]
  23. DvorkinJ., MoosD., PackwoodJ. and NurA.1999. Identifying patchy saturation from well logs. Geophysics64(6), 1756–1759.
    [Google Scholar]
  24. FrenkelJ.1944. Orientation and rupture of linear macromolecules in dilute solutions under the influence of viscous flow. Acta Physicochimica URSS19(1), 51–76.
    [Google Scholar]
  25. GallipoliD., GensA., SharmaR. and VaunatJ.2003. An elasto‐plastic model for unsaturated soil incorporating the effects of suction and degree of saturation on mechanical behaviour. Géotechnique53(1), 123–136.
    [Google Scholar]
  26. GaoY. and HuH.2010. Seismoelectromagnetic waves radiated by a double couple source in a saturated porous medium. Geophysical Journal International181(2), 873–896.
    [Google Scholar]
  27. GaramboisS. and DietrichM.2001. Seismoelectric wave conversions in porous media: Field measurements and transfer function analysis. Geophysics66(5), 1417–1430.
    [Google Scholar]
  28. GrobbeN. and SlobE.2016. Seismo‐electromagnetic thin‐bed responses: Natural signal enhancements? Journal of Geophysical Research: Solid Earth121(4), 2460–2479.
    [Google Scholar]
  29. GuichetX., JouniauxL. and PozziJ.2003. Streaming potential of a sand column in partial saturation conditions. Journal of Geophysical Research108(B3).
    [Google Scholar]
  30. HaartsenM. and PrideS.1997. Electroseismic waves from point sources in layered media. Journal of Geophysical Research102(B11), 24745–24769.
    [Google Scholar]
  31. HainesS., PrideS., KlempererS. and BiondiB.2007. Seismoelectric imaging of shallow targets. Geophysics72(2), G9.
    [Google Scholar]
  32. HolzhauerJ.2015. Seismic and seismoelectric monitoring of an unconsolidated porous medium . PhD thesis, Université de Pau et des Pays de l'Adour, France.
  33. HuH., LiuJ. and WangK.2002. Attenuation and seismoelectric characteristics of dynamically compatible porous media, in 2002 SEG Annual Meeting, Expanded Abstracts, Society of Exploration Geophysicists.
  34. IvanovA.1939. Effect of electrization of earth layers by elastic waves passing through them. Comptes Rendus (Doklady) de l'Academie des Sciences de L'URRS24, 42–45.
    [Google Scholar]
  35. IvanovA.1940. The seismoelectric effect of the second kind, in Proc Academy of Sciences USSR series of geography and geophysics, vol. 4, pp. 699–726.
  36. JacksonM.2008. Characterization of multiphase electrokinetic coupling using a bundle of capillary tubes model. Journal of Geophysical Research: Solid Earth113(B4).
    [Google Scholar]
  37. JacksonM.2010. Multiphase electrokinetic coupling: Insights into the impact of fluid and charge distribution at the pore scale from a bundle of capillary tubes model. Journal of Geophysical Research: Solid Earth115(B7).
    [Google Scholar]
  38. JougnotD., RubinoJ., CarbajalM., LindeN. and HolligerK.2013. Seismoelectric effects due to mesoscopic heterogeneities. Geophysical Research Letters40(10), 2033–2037.
    [Google Scholar]
  39. JouniauxL. and ZysermanF.2016. A review on electrokinetically induced seismo‐electrics, electro‐seismics, and seismo‐magnetics for earth sciences. Solid Earth7(1), 249.
    [Google Scholar]
  40. KnightR. and Nolen‐HoeksemaR.1990. A laboratory study of the dependence of elastic wave velocities on pore scale fluid distribution. Geophysical Research Letters17(10), 1529–1532.
    [Google Scholar]
  41. LindeN., JougnotD., RevilA., MatthäiS., AroraT., RenardD. and DoussanC.2007. Streaming current generation in two‐phase flow conditions. Geophysical Research Letters34(3).
    [Google Scholar]
  42. MavkoG., MukerjiT. and DvorkinJ.2003. The rock physics handbook: Tools for seismic analysis of porous media. Cambridge University Press.
    [Google Scholar]
  43. MesgouezA., Lefeuve‐MesgouezG. and ChambarelA.2005. Transient mechanical wave propagation in semi‐infinite porous media using a finite element approach. Soil Dynamics and Earthquake Engineering25(6), 421–430.
    [Google Scholar]
  44. MonachesiL., RubinoJ., Rosas‐CarbajalM., JougnotD., LindeN., QuintalB. and HolligerK.2015. An analytical study of seismoelectric signals produced by 1‐D mesoscopic heterogeneities. Geophysical Journal International201(1), 329–342.
    [Google Scholar]
  45. MüllerT., GurevichB. and LebedevM.2010. Seismic wave attenuation and dispersion resulting from wave‐induced flow in porous rocks ‐ A review. Geophysics75(5), 75A147–75A164.
    [Google Scholar]
  46. Nazarova‐CherrièreM.2014. Wettability study through X‐ray micro‐CT pore space imaging in EOR applied to LSB recovery process . PhD thesis, Université de Pau et des Pays de l'Adour, France.
  47. NeevJ. and YeattsF.1989. Electrokinetic effects in fluid‐saturated poroelastic media. Physical Review B40(13), 9135.
    [Google Scholar]
  48. ParkhomenkoE.1971. Electrification phenomena in rocks. Pleunum Press.
    [Google Scholar]
  49. ParkhomenkoE. and GaskarovI.1971. Borehole and laboratory studies of the seismoelectric effect of the second kind in rocks. Izv. Akad. Sci. USSR, Physics Solid Earth9, 663–666.
    [Google Scholar]
  50. ParkhomenkoI., Tsze‐SanC. and Chien‐SanC.1964. A study of the influence of moisture on the magnitude of the seismoelectric effect in sedimentary rocks by a laboratory method. Bull.(Izv.) Acad. Sci., USSR, Geophys. Ser2, 115–118.
    [Google Scholar]
  51. PhillipsS., OzbekH. and OttoR.1978. Basic energy properties of electrolytic solutions database, in 6th Int. CODATA Conference.
  52. PrideS.1994. Governing equations for the coupled electromagnetics and acoustics of porous media. Physical Review B50(21), 15678–15696.
    [Google Scholar]
  53. PrideS.2005. Relationships between seismic and hydrological properties, in Hydrogeophysics. pp. 253–290, Springer.
    [Google Scholar]
  54. PrideS. and HaartsenM.1996. Electroseismic wave properties. Journal of the Acoustical Society of America100(3), 1301–1315.
    [Google Scholar]
  55. PrideS. and MorganF.1991. Electrokinetic dissipation induced by seismic waves. Geophysics56(7), 914–925.
    [Google Scholar]
  56. RevilA. and JardaniA.2010. Seismoelectric response of heavy oil reservoirs: theory and numerical modelling. Geophysical Journal International180(2), 781–797.
    [Google Scholar]
  57. RevilA. and MahardikaH.2013. Coupled hydromechanical and electromagnetic disturbances in unsaturated porous materials. Water resources research49(2), 744–766.
    [Google Scholar]
  58. RevilA., LindeN., CerepiA., JougnotD., MatthäiS. and FinsterleS.2007. Electrokinetic coupling in unsaturated porous media. Journal of Colloid and Interface Science313(1), 315–327.
    [Google Scholar]
  59. RevilA., BarnierG., KaraoulisM., SavaP., JardaniA. and KulessaB.2013. Seismoelectric coupling in unsaturated porous media: theory, petrophysics, and saturation front localization using an electroacoustic approach. Geophysical Journal International196(2), 867–884.
    [Google Scholar]
  60. RevilA., JardaniA., SavaP. and HaasA.2015. The Seismoelectric Method: Theory and Application. John Wiley & Sons.
    [Google Scholar]
  61. RubinoJ. and HolligerK.2012. Seismic attenuation and velocity dispersion in heterogeneous partially saturated porous rocks. Geophysical Journal International188(3), 1088–1102.
    [Google Scholar]
  62. SchoemakerF., GrobbeN., SchakelM., De RidderS., SlobE. and SmeuldersD.2012. Experimental validation of the electrokinetic theory and development of seismoelectric interferometry by cross‐correlation. International Journal of Geophysics2012.
    [Google Scholar]
  63. SimonB., ZienkiewiczO. and PaulD.1984. An analytical solution for the transient response of saturated porous elastic solids. International Journal for Numerical and Analytical Methods in Geomechanics8(4), 381–398.
    [Google Scholar]
  64. SlobE. and WapenaarK.2007. Electromagnetic Green's functions retrieval by cross‐correlation and cross‐convolution in media with losses. Geophysical Research Letters34(5).
    [Google Scholar]
  65. StrahserM., RabbelW. and SchildknechtF.2007. Polarisation and slowness of seismoelectric signals: a case study. Near Surface Geophysics5(2), 97–114.
    [Google Scholar]
  66. StrahserM., JouniauxL., SailhacP., MattheyP. and ZillmerM.2011. Dependence of seismoelectric amplitudes on water content. Geophysical Journal International.
    [Google Scholar]
  67. TejaA. and RiceP.1981. Generalized corresponding states method for the viscosities of liquid mixtures. Industrial and Engineering Chemistry Fundamentals20(1), 77–81.
    [Google Scholar]
  68. ThompsonA. and GistG.1993. Geophysical applications of electrokinetic conversion. The Leading Edge12, 1169.
    [Google Scholar]
  69. ThompsonR.1936. The seismic electric effect. Geophysics1(3), 327.
    [Google Scholar]
  70. VoigtW.1928. Textbook of crystal physics. BB Teubner, Leipzig.
  71. WaltonK.1987. The effective elastic moduli of a random packing of spheres. Journal of the Mechanics and Physics of Solids35(2), 213–226.
    [Google Scholar]
  72. WapenaarK. and FokkemaJ.2006. Green's function representations for seismic interferometry. Geophysics71(4), SI33–SI46.
    [Google Scholar]
  73. WapenaarK., SlobE. and SniederR.2006. Unified Green's function retrieval by cross correlation. Physical Review Letters97(23), 234301.
    [Google Scholar]
  74. WapenaarK., SlobE. and SniederR.2008. Seismic and electromagnetic controlled‐source interferometry in dissipative media. Geophysical Prospecting56(3), 419–434.
    [Google Scholar]
  75. WardenS., GaramboisS., JouniauxL., BritoD., SailhacP. and BordesC.2013. Seismoelectric wave propagation numerical modelling in partially saturated materials. Geophysical Journal International194(3), 1498–1513.
    [Google Scholar]
  76. WeiC. and MuraleetharanK.2002a. A continuum theory of porous media saturated by multiple immiscible fluids: I. linear poroelasticity. International Journal of Engineering Science40(16), 1807–1833.
    [Google Scholar]
  77. WeiC. and MuraleetharanK.2002b. A continuum theory of porous media saturated by multiple immiscible fluids: Ii. lagrangian description and variational structure. International Journal of Engineering Science40(16), 1835–1854.
    [Google Scholar]
  78. WoodA.1955. A textbook of sound. G. Bell and sons.
    [Google Scholar]
  79. ZhuZ. and ToksözM.2003. Effects of saturant conductivity on seismoelectric conversion, Tech. rep., Massachusetts Institute of Technology. Earth Resources Laboratory.
  80. ZhuZ. and ToksözM.2005. Seismoelectric and seismomagnetic measurements in fractured borehole models. Geophysics70, F45.
    [Google Scholar]
  81. ZhuZ. and ToksözM.2013. Experimental measurements of the streaming potential and seismoelectric conversion in Berea sandstone. Geophysical Prospecting61(3), 688–700.
    [Google Scholar]
  82. ZhuZ., HaartsenM. and ToksözM.1999. Experimental studies of electrokinetic conversions in fluid‐saturated borehole models. Geophysics64(5), 1349.
    [Google Scholar]
  83. ZhuZ., HaartsenM. and ToksözM.2000. Experimental studies of seismoelectric conversions in fluid‐saturated porous media. Journal of Geophysical Research105(B12), 28055–28.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/1365-2478.12448
Loading
/content/journals/10.1111/1365-2478.12448
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): Acoustics; Electromagnetics; Monitoring; Reservoir Geophysics; Seismics

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error