1887
Volume 15 Number 2
  • ISSN: 1569-4445
  • E-ISSN: 1873-0604

Abstract

ABSTRACT

We performed ground‐penetrating radar measurements to study the internal structure of Puente del Inca (Inca Bridge). This natural structure is located in Mendoza, Argentina, and its formation is associated with deposition of travertine caused by geobiological processes created by hot mineral springs. The 200‐MHz ground‐penetrating radar measurements performed on the surface of the bridge allowed us to relate the behaviour of the electromagnetic signal with the presence or absence of hot spring activity. We also made ground‐penetrating radar measurements at 20 MHz to estimate the propagation velocity and study the bridge’s internal structure. In order to validate the ground‐penetrating radar results, we used a soil dielectric sensor to obtain the attenuation and the velocity of the medium. The results showed similar propagation velocities (0.0222 m/ns on average) between field observation (ground‐penetrating radar) and independent sensor data, as well as significant attenuation due to the hot spring water, which is the primary element controlling the response of the electromagnetic signals. As checked through dielectric sensor measurements, the unusually low electromagnetic wave velocity is due to polarisation mechanisms related to thermal water, which cause a very high permittivity value (178.1). However, the medium is not sufficiently dispersive (conductivity=27.7 mS/m; attenuation=3.5 dB/m) to condition the results of ground‐penetrating radar measurements if low‐frequency antennas (20 MHz) are used.

Loading

Article metrics loading...

/content/journals/10.3997/1873-0604.2017004
2017-01-01
2024-04-24
Loading full text...

Full text loading...

References

  1. Aguirre UrretaM.B. and RamosV.A.1996. Áreas de Interés. In: Geología de la Región del Aconcagua, Vol. 24(15) (ed V.A.Ramos ), pp. 471–480. Buenos Aires, Argentina: Anales de la Dirección Nacional del Servicio Geológico, Subsecretaría de Minería.
    [Google Scholar]
  2. AnnanA.P.2003. Ground Penetrating Radar: Principles, Procedures and Applications. Mississauga, Canada: Sensors & Software Inc.
    [Google Scholar]
  3. ArulanandanK.2003. Soil structure: In Situ Properties and Behavior. Davis, CA: Department of Civil and Environmental Engineering, University of California, Davis.
    [Google Scholar]
  4. BarnesF.S. and GreenebaumB. (eds). 2006. Bioengineering and Biophysical Aspects of Electromagnetic Fields.
    [Google Scholar]
  5. BiskupK., LorenzoH. and AriasP.2005. Aplicabilidad del radar de subsuelo para el estudio de la zona no saturada del suelo: ejemplos en ambientes arenosos costeros. Estudios en la Zona no Saturada del Suelo7, 197–204.
    [Google Scholar]
  6. BristowC.2009. Ground penetrating radar in Aeolian dune sands. In: Ground Penetrating Radar Theory and Applications (ed H.M.Jol ), pp. 273–297. Amsterdam, The Netherlands: Elsevier Science.
    [Google Scholar]
  7. CassidyN.J.2009. Electrical and magnetic properties of rocks, soils and fluids. In: Ground Penetrating Radar Theory and Applications (ed H.M.Jol ), pp. 141–176. Amsterdam, The Netherlands: Elsevier Science.
    [Google Scholar]
  8. ChelidzeT.L. and GueguenY.1999a. Electrical spectroscopy of porous rocks: A review—I. Theoretical models. Geophysical Journal International137(1), 1–15.
    [Google Scholar]
  9. ChelidzeT.L., GueguenY. and RuffetC.1999b. Electrical spectroscopy of porous rocks: A review—II. Experimental results and interpretation. Geophysical Journal International137(1), 16–34.
    [Google Scholar]
  10. CookJ.C.1975. Radar transparencies of mine and tunnel rocks. Geophysics40(5), 865–885.
    [Google Scholar]
  11. CortiH.1924. Contribución al estudio de las aguas termominerales de Puente del Inca. Publicación1, 8–9. Buenos Aires, Argentina: Dirección General de Minas, Geología y Hidrografía.
    [Google Scholar]
  12. DanielsD.J.2004. Ground Penetrating Radar. IEEE.
    [Google Scholar]
  13. DarwinC.1838. Journal of researches into the Natural History and Geology of the countries visited during the voyage of the H.M.S. Beagle around the world. London, UK: John Murray, 512pp.
    [Google Scholar]
  14. DavisJ.L. and AnnanA.P.1989. Ground‐penetrating radar for high‐resolution mapping of soil and rock stratigraphy. Geophysical Prospecting37, 531–551.
    [Google Scholar]
  15. DesmondM., MavrogiannisN. and GagnonZ.2012. Maxwell‐Wagner polarization and frequency‐dependent injection at aqueous electrical interfaces. Physical Review Letters109(18), 187602.
    [Google Scholar]
  16. DiFrancoJ.V. and RubinW. L.1980. Radar Detection. Dedham, MA, USA: Artech House.
    [Google Scholar]
  17. DoughertyA.J. and LynneB.Y.2010. A novel geophysical approach to imaging sinter deposits and other subsurface geothermal features utilizing ground penetrating radar. Geothermal Resources Council Transactions34, 857–862.
    [Google Scholar]
  18. DoughertyA.J. and LynneB.Y.2011. Utilizing ground penetrating radar and infrared thermography to image vents and fractures in geothermal environments. Geothermal Research Council Transactions35, 743–749.
    [Google Scholar]
  19. EndresA. and KnightR.1992. A theoretical treatment of the effect of microscopic fluid distribution on the dielectric properties of partially saturated rocks. Geophysical Prospecting40, 307–324.
    [Google Scholar]
  20. FauquéL., HermannsR., HewittK., RosasM., WilsonC., BaumannV.et al.2009. Mega‐deslizamientos de la Pared Sur del Cerro Aconcagua y su relación con depósitos asignados a la glaciación Pleistocena. Revista de la Asociación Geológica Argentina691–712.
    [Google Scholar]
  21. FerrariS.G., ItalianoM.C. and SilvaH.J.2002. Effect of a cyanobacterial community on calcium carbonate precipitation in Puente del Inca (Mendoza, Argentina). Acta Botanica Croatica61(1), 1–9.
    [Google Scholar]
  22. FoukeB., FarmerJ.D., Des MariasD.J., PrattL., SturchioN.C., BurnsP.C.et al.2000. Depositional facies and aqueous‐solid geochemistry of travertine depositing hot springs (Angel Terrace, Mammoth Hot Springs, Yellowstone National Park, USA). Journal of Sedimentary Research70(3), 565–585.
    [Google Scholar]
  23. FoukeB.W., BonheyoG.T., SanzenbacherE. and Frias‐LopezJ.2003. Partitioning of bacterial communities between travertine depositional facies at Mammoth Hot Springs, Yellowstone National Park, USA. Canadian Journal of Earth Sciences40, 1531–1548.
    [Google Scholar]
  24. FoukeB.W.2011. Hot‐Spring Systems Geobiology: abiotic and biotic influences on travertine formation at Mammoth Hot Springs, Yellowstone National Park, USA. Sedimentology58(1), 170–219.
    [Google Scholar]
  25. Fernández BelmonteM.C.1998. Ficoflora termal asociada al monumento natural Puente del Inca, Mendoza, Argentina. Facultad de Ingeniería, Universidad Nacional de San Luis.
    [Google Scholar]
  26. GabrielC., GabrielS. and CorthoutE.1996a. The dielectric properties of biological tissues: I. Literature survey. Physics in Medicine and Biology41, 2231–2249.
    [Google Scholar]
  27. GabrielS., LauR.W. and GabrielC.1996b. The dielectric properties of biological tissues: II. Measurements in the frequency range of 10 Hz to 20 GHz. Physics in Medicine and Biology41, 2251–2269.
    [Google Scholar]
  28. GabrielS., LauR.W. and GabrielC.1996c. The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues. Physics in Medicine and Biology41, 2271–2293.
    [Google Scholar]
  29. GandinA. and CapezzuoliE.2014. Travertine: distinctive depositional fabrics of 584 carbonates from thermal spring systems. Sedimentology61, 264–290.
    [Google Scholar]
  30. HagerJ. and CarnevaleM.2006. The application of low frequency GPR to stratigraphic investigations. 11th International Conference on Ground Penetrating Radar, pp. 590–594.
    [Google Scholar]
  31. HammerO., DystheD.K. and JamtveitB.2007. The dynamics of travertine dams. Earth and Planetary Science Letters256, 258–263.
    [Google Scholar]
  32. HilhorstM.A.1998. Dielectric characterisation of soil. Doctoral thesis, Wageningen Agricultural University, The Netherlands.
    [Google Scholar]
  33. HuismanJ.A., HubbardS.S., RedmanJ.D. and AnnanA.P.2003. Measuring soil water content with ground penetrating radar. Vadose Zone Journal2, 476–491.
    [Google Scholar]
  34. JoshM., ClennellM.B., RavenM.D. and DewhurstD.N.2015. Factors controlling dielectric response of clays and shales. 2015 SEG annual meeting.
    [Google Scholar]
  35. KittlE.1941. El Puente del Inca, su formación y conservación. Revista Minera12(3)‐(4), 110–122, Buenos Aires.
    [Google Scholar]
  36. Laboratorio de Agropecuaria de Mendoza
    Laboratorio de Agropecuaria de Mendoza . 1983. Análisis químicos de las aguas termales de Puente del Inca. (Unpublished). Mendoza, Argentina.
    [Google Scholar]
  37. LambotS.,SlobE., Chavarro‐RinconD.C., LubczynskiM.W. and VereeckenH.2008. Measuring soil surface water content in irrigated areas of southern Tunisia using full‐waveform inversion of proximal GPR data. Near Surface Geophysics6(2008), 403–410.
    [Google Scholar]
  38. LeucciG.2008. Ground penetrating radar: the electromagnetic signal attenuation and maximum penetration depth. Scholarly Research Exchange.
    [Google Scholar]
  39. LiuN.2007. Soil and site characterization using electromagnetic waves.
    [Google Scholar]
  40. LynneB.Y.2012. Sinter architecture and ground penetrating radar: a new and innovative dual technique for understanding paleo‐flow hot spring settings and their application for early geothermal exploration. Memorias del XX Congreso Anual‐I Congreso Geotérmico Latinoamericano Morelia, Michoacán, México.
    [Google Scholar]
  41. MahmoudzadehM.R., FrancésA.P., LubczynskiM.W. and LambotS.2012. Using ground penetrating radar to investigate the water table depth in weathered granites: Sardon case study, Spain. Journal of Applied Geophysics79, 17–26.
    [Google Scholar]
  42. MonteverdeA.1947. Origen del Puente del Inca. Revista La Ingeniería866, 775–791.
    [Google Scholar]
  43. MonteverdeA.1967. Preservación del Puente del Inca. Revista Caminos34(295), 33–36.
    [Google Scholar]
  44. NealA.2004. Ground‐penetrating radar and its use in sedimentology: principles, problems and progress. Earth‐Science Reviews66, 261–330.
    [Google Scholar]
  45. PolkC. and PostowE.1986. CRC Handbook of Biological Effects of Electromagnetic Fields. Boca Raton, FL: CRC Press, Inc.
    [Google Scholar]
  46. PowersM.H.1997. Modeling frequency‐dependent GPR. The Leading Edge16, 1657–1662.
    [Google Scholar]
  47. RamosV.A.1993. Geología y estructura de Puente del Inca y el control tectónico de sus aguas termales. Simposio Sobre Puente del Inca, 12° Congreso Geológico Argentino y 2° Congreso de Exploración de Hidrocarburos, Buenos Aires, Argentina, Actas5, 8–19.
    [Google Scholar]
  48. RamosV.A.2009. Darwin at Puente del Inca: observations on the formation of the Inca›s bridge and mountain building. Revista de la Asociación Geológica Argentina64(1), 170–179.
    [Google Scholar]
  49. RimoldiH.1993. Puente del Inca un monumento natural comprometido. XII Congreso Geológico Argentino. II Congreso de Exploración de Hidrocarburos. Actas TV, 20–23.
    [Google Scholar]
  50. RubioH.A., SantilliC.A. and SalomónM.A.1993. Puente del Inca: restauración y preservación. 12° Congreso Geológico Argentino y 2° Congreso de Exploración de Hidrocarburos, Mendoza, Argentina, Actas5, 20–23.
    [Google Scholar]
  51. SandmeierK.J.2003. Reflexw 4.2 Manuel Book. Karlsruhe, Germany: Sandmeier Software.
    [Google Scholar]
  52. SchillerW.1907. Geologische Unterschungenbei Puente del Inca (Aconcagua). Vorläufige Mitteilung. Neues Jahrbuchfür Mineralogie, Paläontologie und Geologie, Beilage Band24, 716–736.
    [Google Scholar]
  53. SeyfriedM.S. and MurdockM.D.2004. Measurement of soil water content with a 50‐MHz soil dielectric sensor. Soil Science Society of America Journal68, 394–403.
    [Google Scholar]
  54. SeyfriedM.S., GrantL.E., DuE. and HumesK.2005. Dielectric loss and calibration of the hydra probe soil water sensor. Vadose Zone Journal4, 1070–1079.
    [Google Scholar]
  55. TakasuT.2009. RTKLIB: Open Source Program Package for RTK‐GPS. FOSS4G2009, Tokyo, Japan.
    [Google Scholar]
  56. TelfordW.M., GeldartL.P., SheriffR.E. and KeysD.A.1976. Applied Geophysics. Cambridge University Press.
    [Google Scholar]
  57. ToppG.C., DavisJ.L. and AnnanA.P.1980. Electromagnetic determination of soil water content: measurements in coaxial transmission lines. Water Resources Research16(3), 574–582.
    [Google Scholar]
  58. Van DamR.L., SchlagerW., DekkersM.J. and HuismanJ.A.2002. Iron oxides as a cause of GPR reflections. Geophysics67, 536–545.
    [Google Scholar]
  59. Van DamR.L., HendrickxJ.M.H., CassidyN.J., NorthR.E., DoganM. and BorchersB.2013. Effects of magnetite on high‐frequency ground‐penetrating radar. Geophysics78(5), H1–H11.
    [Google Scholar]
  60. Vander VorstA., RosenA. and KotsukaY.2006. RF/Microwave Interaction with Biological Tissues, Vol. 181. John Wiley & Sons.
    [Google Scholar]
  61. VeyseyJ., FoukeB.W., KandianisM.T., SchickelT.J., JohnsonR.W. and GoldenfeldN.2008. Reconstruction of water temperature, pH, and flux of ancient hot springs from travertine depositional facies. Journal of Sedimentary Research78, 69–76.
    [Google Scholar]
  62. WhartonR.P., HazenG.A., RauR.N. and BestD.L.1980. Advancements in electromagnetic propagation logging. Society Petroleum Engineering.
    [Google Scholar]
  63. WolfM., GulichR., LunkenheimerP. and LoidlA.2011. Broadband dielectric spectroscopy on human blood. Biochimica et Biophysica Acta (BBA)‐General Subjects1810(8), 727–740.
    [Google Scholar]
  64. YalçinerC.Ç. 2013. Investigation of the subsurface geometry of fissure‐ridge travertine with GPR, Pamukkale, western Turkey. Journal of Geophysics and Engineering10, 035001.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.3997/1873-0604.2017004
Loading
/content/journals/10.3997/1873-0604.2017004
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error