1887
Volume 23, Issue 2
  • ISSN: 1354-0793
  • E-ISSN:

Abstract

The Barents Sea hosts multiple source rocks from Palaeozoic to Cretaceous age. Attempts in the past to link individual oil and condensates directly to one type of source rock have often been complicated due to ‘blended-oil’ signatures. As a result of uplift, remigration, alteration and mixing of petroleums, deconvolution of primary petroleum signatures in terms of maturity, age and depositional environment is generally complicated. In this paper, we use δC isotopes, and age- and source-related biomarkers to line out the main basin-scale trends concerning the depositional environments and source-rock ages, as well as the type of organic matter input that constitutes the inferred source-rock kerogen. Multivariate statistical analysis was applied as an auxillary tool to suggest petroleum families. Results classify the petroleums into four families: (1) Permian–Triassic-sourced petroleums; (2) Carboniferous-sourced petroleums; (3) Jurassic-sourced petroleums; and (4) phase-fractionated condensates charged from late mature Triassic–Jurassic source rocks. The inferred palaeo-environments for the petroleums cover marine, transitional and terrestrial depositional environments, and display geological variations that prevailed during Permian–Jurassic times. Isotope signatures and age-specific parameters suggest that many oils in the region should be considered as blends or mixtures derived from more than one source rock.

Loading

Article metrics loading...

/content/journals/10.1144/petgeo2016-039
2016-10-07
2024-04-18
Loading full text...

Full text loading...

References

  1. Abay, T.B., Karlsen, D.A., Pedersen, J.H., Lerch, B., Schwark, L. & Backer-Owe, K.
    2014. Regional variation in the Triassic organo-facies signatures of the Barents Sea: Is there a recognizable Triassic geochemical signature for the Kobbe/Steinkobbe/Botneheia Fm? Poster presented at the Arctic Conference Days 2014 , 2–6 June 2014, Tromsø, Norway.
  2. Abdullah, W.H., Murchinson, D., Jones, J.M., Telnæs, N. & Gjelberg, J.
    1988. Lower Carboniferous coal depositional environments on Spitsbergen, Svalbard. Organic Geochemistry, 13, 953–964, http://doi.org/10.1016/0146-6380(88)90277-X
    [Google Scholar]
  3. Alsager, S.
    2005. Petroleum geokjemisk studie av brønn 7122/2-1 og 7122/7-1 I Goliatfunnet og sammenligning med andre petroleumsforekomster i Hammerfestbassenget. [Petroleum geochemical study of wells 7122/2-1 and 7122/7-1 of the Goliat discovery and correlation to other petroleums in the Hammerfest Basin] Master's thesis, University of Oslo, Oslo, Norway (in Norwegian).
    [Google Scholar]
  4. Andrusevich, V.E., Engel, M.H., Zumberge, J.E. & Brothers, L.A.
    1998. Secular episodic changes in stable carbon isotope composition of crude oils. Chemical Geology, 152, 59–72, http://doi.org/10.1016/S0009-2541(98)00096-5
    [Google Scholar]
  5. Aquino Neto, F.R., Trendel, J.M., Restle, A., Albrecht, P. & Connan, J.
    1983. Occurrence and formation of tricyclic and tetracyclic terpanes in sediments and petroleum. In: Bjorøy, M. (ed.) Advances in Organic Geochemistry 1981. John Wiley, Chichester, 659–667.
    [Google Scholar]
  6. Augustson, J.H.
    1993. A method on classification of oil traps based on heavy oil content in cores with relevance to filling and drainage of Barents Sea oil-bearing structures. In: Vorren, T.O., Bergsager, E., Dahl-Stamnes, Ø.A., Holter, E., Johansen, B., Lie, E. & Lund, T.B. (eds) Artic Geology and Petroleum Potential. Norwegian Petroleum Society, Special Publications, 2, 691–702.
    [Google Scholar]
  7. Berglund, L.T.J., Augustson, R., Færseth, J., Gjelberg, J. & Ramber-Moe, H.
    1986. The evolution of the Hammerfest Basin. In: Spencer, A.M., Holter, E., Campell, C.J., Hanslien, S.H., Nelson, P.H.H., Nysæther, E. & Ormassen, E.G. (eds) Habitat of Hydrocarbons on the Norwegian Continental Shelf. Norwegian Petroleum Society, Oslo, Norway, 319–338.
    [Google Scholar]
  8. Bjorøy, M., Hall, P.B., Ferriday, I.L. & Mørk, A.
    2009. Triassic source rocks of the Barents Sea and Svalbard. American Association of Petroleum Geologists Search and Discovery Article 10219 presented at the AAPG Convention, June 7–10, 2009, Denver, Colorado, USA.
  9. Brekke, H., Sjulstad, H.I., Magnus, C. & William, R.W.
    2001. Sedimentary environments offshore Norway – an overview. In: Martinsen, O.J. & Dreyer, T. (eds) Sedimentary Environments Offshore Norway – Palaeozoic to Recent. Norwegian Petroleum Society, Special Publications, 10, 7–37.
    [Google Scholar]
  10. Bugge, T., Ringas, J.E., Leith, D.A., Mangerud, G., Weiss, H.M. & Leith, T.L.
    2002. Upper Permian as a new play model on the mid-Norwegian continental shelf: investigated by shallow stratigraphic drilling. American Association of Petroleum Geologists Bulletin, 86, 107–127.
    [Google Scholar]
  11. Cavanagh, A.J., di Primio, R., Schenk-Wenderoth, M. & Horsfield, B.
    2006. Severity and timing of Cenozoic exhumation in the southwestern Barents Sea. Journal of the Geological Society, London, 163, 761–774, http://doi.org/10.1144/0016-76492005-146
    [Google Scholar]
  12. Christiansen, F.G., Piasecki, S., Stemmerik, L. & Telnæs, N.
    1993. Depositional environment and organic geochemistry of the Upper Permian Ravnefjeld Formation source rock in East Greenland. American Association of Petroleum Geologists Bulletin. 77, 1519–1537.
    [Google Scholar]
  13. Connan, J., Bouroullec, J., Dessert, D. & Albrecht, P.
    1986. The microbial input in carbonate–anhydrite facies of sabkha paleoenvironment from Guatemala: A molecular approach. In: Leythaeuser, D. & Rullkötter, J. (eds) Advances in Organic Geochemistry 1985. Organic GeochemistrySeries, 10. Pergamon Press, Oxford, 29–50.
    [Google Scholar]
  14. Didyk, B.M., Simoneit, B.R.T., Brassell, S.C. & Eglinton, G.
    1978. Organic geochemical indicators of paleoenvironmental conditions of sedimentation. Nature, 272, 216–222, http://doi.org/10.1038/272216a0
    [Google Scholar]
  15. Doré, A.G. & Jensen, L.N.
    1996. The impact of late Cenozoic uplift and erosion on hydrocarbon exploration: offshore Norway and some other uplifted basins. Global and Planetary Change, 12, 415–436, http://doi.org/10.1016/0921-8181(95)00031-3
    [Google Scholar]
  16. Dutta, S., Greenwood, P.F., Brocke, R., Schaefer, R.G. & Mann, U.
    2006. New insights into the relationship between Tasmanites and tricyclic terpenoids. Organic Geochemistry, 37, 117–127.
    [Google Scholar]
  17. Ehrenberg, S.N., Nielsen, E.B., Svånå, T.A. & Stemmerik, L.
    1998. Depositional evolution of the Finnmark carbonate platform, Barents Sea: results from wells 7128/6-1 and 7128/4-1. Norsk Geologisk Tidsskrift, 78, 185–224.
    [Google Scholar]
  18. Faleide, J.I., Gudlaugsson, S.T. & Jacquart, G.
    1984. Evolution of the western Barents Sea. Marine and Petroleum Geology, 1, 123–150, http://doi.org/10.1016/0264-8172(84)90082-5
    [Google Scholar]
  19. Faleide, J.I., Tsikalas, F. et al.
    2008. Structure and evolution of the continental margin off Norway and the Barents Sea. Episodes, 31, 82–90.
    [Google Scholar]
  20. Farrimond, P., Bevan, J.C. & Bishop, A.N.
    1999. Tricyclic terpane maturity parameters: response to heating by an igneous intrusion. Organic Geochemistry, 30, 1011–1019.
    [Google Scholar]
  21. Gabrielsen, R.H., Faerseth, R.B., Jensen, L.N., Kvalheim, J.E. & Riis, F.
    1990. Structural Elements of the Norwegian Continental Shelf. Pt. 1. The Barents Sea Region. Norwegian Petroleum Directorate Bulletin, 6, 47.
    [Google Scholar]
  22. Galimov, E.M.
    1980. C13/C12 in kerogen. In: Durand, B. (ed.) Kerogen: Insoluble organic Matter from Sedimentary Rocks. Edition Technip, Paris, 271–300.
    [Google Scholar]
  23. Grantham, P.J. & Wakefield, L.L.
    1988. Variations in the sterane carbon number distributions of marine source rock derived crude oils through geological time. Organic Geochemistry, 12, 61–73, http://doi.org/10.1016/0146-6380(88)90115-5
    [Google Scholar]
  24. Grantham, P.J., Posthuma, J. & De Groot, K.
    1980. Variation and significance of the C27 and C28 triterpane content of a North Sea core and various North Sea crude oils. In: Douglas, A.G. & Maxwell, J.R. (eds) Advances in Organic Geochemistry. Pergamon Press, Oxford, 29–48, http://doi.org/10.1016/0079-1946(79)90086-7
    [Google Scholar]
  25. Gussow, W.C.
    1954. Differential entrapment of oil and gas: a fundamental principle. American Association of Petroleum Geologists Bulletin, 38, 816–853.
    [Google Scholar]
  26. He, M., Moldowan, M., Nemchenko-Rovenskaya, A. & Peters, K.E.
    2012. Oil families and their inferred source rocks in the Barents Sea and northern Timan-Pechora Basin, Russia. American Association of Petroleum Geologists Bulletin, 96, 1121–1146.
    [Google Scholar]
  27. Henriksen, E., Bjornseth, H.M. et al.
    2011. Chapter 17. Uplift and erosion of the greater Barents Sea: impact on prospectivity and petroleum systems. In: Spencer, A.M., Embry, A.F., Gautier, D.L., Stoupakova, A.V. & Sørensen, K. (eds) Arctic Petroleum Geology. Geological Society, London, Memoirs, 35, 271–281, http://doi.org/10.1144/M35.17
    [Google Scholar]
  28. Holba, A.G., Dzou, L.I.P. et al.
    1998a. Application of 24-norcholestanes for constraining source age of petroleum. Organic Geochemistry, 29, 1269–1283, http://doi.org/10.1016/S0146-6380(98)00184-3
    [Google Scholar]
  29. Holba, A.G., Tegelaar, E., Huizinga, B.J., Moldowan, J.M., Singletary, M.S., McCaffrey, M.A. & Dzou, L.I.P.
    1998b. 24-norcholestanes as age-sensitive molecular fossils. Geology, 26, 783–786, http://doi.org/10.1130/0091-7613(1998)026<0783:NAASMF>2.3.CO;2
    [Google Scholar]
  30. Holba, A.G., Ellis, L., Dzou, L.I.P., Hallam, A., Masterson, W.D., Francu, J. & Fincannon, A.L.
    2001. Extended tricyclic terpanes as age discriminators between Triassic, Early Jurassic, and Middle–Late Jurassic oils. Abstract presented at the 20th International Meeting on Organic Geochemistry , 10–14 September 2001, Nancy, France.
  31. Holba, A.G., Dzou, L.I.P. et al.
    2003. Application of tetracyclic polyprenoids as indicators of input from fresh-brackish water environments. Organic Geochemistry, 34, 441–469, http://doi.org/10.1016/S0146-6380(02)00193-6
    [Google Scholar]
  32. Huang, W.Y. & Meinschein, W.G.
    1979. Sterols as ecological indicators. Geochimica et Cosmochimica Acta, 43, 739–745, http://doi.org/10.1016/0016-7037(79)90257-6
    [Google Scholar]
  33. Hughes, W.B.
    1984. Use of thiophenic organosulphur compounds in characterizing crude oils derived from carbonate versus siliciclastic sources. In: Palacas, J.G. (ed.) Petroleum Geochemistry and Source Rock Potential of Carbonate Rocks. American Association of Petroleum Geologists, Studies in Geology, 18, 181–196.
    [Google Scholar]
  34. Hughes, W.B., Holba, A.G., Miller, D.E. & Richarson, J.S.
    1985. Geochemistry of greater Ekofisk crude oils. In: Thomas, B.M. (ed.) Geochemistry in Exploration of the Norwegian Shelf. Graham & Trotman, London, 75–92.
    [Google Scholar]
  35. Hughes, W.B., Holba, A.G. & Dzou, L.I.P.
    1995. The ratios of dibenzothiophene to phenanthrene and pristane to phytane as indicators of depositional environment and lithology of petroleum source rocks. Geochimica et Cosmochimica Acta, 59, 3581–3598, http://doi.org/10.1016/0016-7037(95)00225-O
    [Google Scholar]
  36. Isaksen, G.H.
    1996. Organic Geochemistry and geohistory of the Triassic succession of Bjørnøya, Barents Sea. Organic Geochemistry, 24, 333–349.
    [Google Scholar]
  37. Jiang, Z. & Fowler, M.G.
    1986. Carotenoid-derived alkanes in oils from northwestern China. In: Leythaeuser, D. & Rullkötter, J. (eds) Advances in Organic Geochemistry 1985. Organic Geochemistry Series, 10. Pergamon Press, Oxford, 831–839, http://doi.org/10.1016/S0146-6380(86)80020-1
    [Google Scholar]
  38. Johansen, S.E., Ostisty, B.K. et al.
    1993. Hydrocarbon potential in the Barents Sea region: play distribution and potential. In: Vorren, T.O., Bergsager, E., Dahl-Stamnes, Ø.A., Holter, E., Johansen, B., Lie, E. & Lund, T.B. (eds) Artic Geology and Petroleum Potential. Norwegian Petroleum Society, Special Publications, 2, 273–320.
    [Google Scholar]
  39. Karlsen, D.A. & Skeie, J.E.
    2006. Petroleum migration, faults and overpressure, Part I: Calibrating basin modelling using petroleum in traps – a review. Journal of Petroleum Geology, 29, 227–256, http://doi.org/10.1111/j.1747-5457.2006.00227.x
    [Google Scholar]
  40. Karlsen, D.A., Nyland, B., Flood, B., Ohm, S.E., Brekke, T., Olsen, S. & Backer-Owe, K.
    1995. Petroleum geochemistry of the Haltenbanken, Norwegian continental shelf. In: Cubitt, J.M. & England, W.A. (eds) The Geochemistry of Reservoirs. Geological Society, London, Special Publications, 86, 203–256, http://doi.org/10.1144/GSL.SP.1995.086.01.14
    [Google Scholar]
  41. Karlsen, D.A., Skeie, J.E. et al.
    2004. Petroleum migration, faults and overpressure. Part II. Case history: The Haltenbanken Petroleum Province, offshore Norway. In: Cubitt, J.M., England, W.A. & Larter, S. (eds) Understanding Petroleum Reservoirs: Towards an Integrated Reservoir Engineering and Geochemical Approach. Geological Society, London, Special Publications, 237, 305–372, http://doi.org/10.1144/GSL.SP.2004.237.01.18
    [Google Scholar]
  42. Killops, S., Stoddart, D. & Mills, N.
    2014. Inferences for sources of oils from the Norwegian Barents Sea using statistical analysis of biomarkers. Organic Geochemistry, 76, 157–166, http://doi.org/10.1016/j.orggeochem.2014.07.011
    [Google Scholar]
  43. Larssen, G.B., Elvebakk, G. et al.
    2002. Upper Palaeozoic lithostratigraphy of the Southern Norwegian Barents Sea. Norges Geologiske Undersøkelser Bulletin, 444, 72.
    [Google Scholar]
  44. Leith, T.L., Weiss, H.M. et al.
    1993. Mesozoic hydrocarbon source-rocks of the Arctic region. In: Vorren, T.O., Bergsager, E., Dahl-Stamnes, O.A., Holter, E., Johansen, B., Lie, E. & Lund, T.B.S. (eds) Arctic Geology and Petroleum Potential. Norwegian Petroleum Society, Special Publications, 2, 1–25.
    [Google Scholar]
  45. Lerch, B., Karlsen, D.A., Abay, T.B., Duggan, D., Seland, R. & Backer-Owe, K.
    2016a. Regional petroleum alteration trends in Barents Sea oils and condensates as a clue to migration regimes and processes. American Association of Petroleum Geologists Bulletin, 100, 165–190, http://doi.org/10.1306/08101514152
    [Google Scholar]
  46. Lerch, B., Karlsen, D.A., Matapour, Z., Seland, R. & Backer-Owe, K.
    2016b. Organic geochemistry of Barents Sea petroleums: Thermal maturity and alteration and mixing processes in oils and condensates. Journal of Petroleum Geology, 39, 125–147.
    [Google Scholar]
  47. Lerche, I., Yu, Z., Tørudbakken, B. & Thomsen, R.O.
    1997. Ice loading effects in sedimentary basins with reference to the Barents Sea. Marine and Petroleum Geology, 14, 277–338.
    [Google Scholar]
  48. Li, M., Wang, T.G., Lillis, P.G., Wang, C. & Shi, S.
    2012. The significance of 24-norcholestanes, triaromatic steroids and dinosteroids in oils and Cambrian–Ordovician source rocks from the cratonic region of the Tarim Basin, NW China. Applied Geochemistry, 27, 1643–1654, http://doi.org/10.1016/j.apgeochem.2012.03.006
    [Google Scholar]
  49. Linjordet, A. & Grung Olsen, R.
    1992. The Jurassic Snøhvit gas field, Hammerfest Basin, offshore Northern Norway. In: Halbouty, M.T. (ed.) Giant Oil and Gas Fields of the Decade 1978–1988. American Association of Petroleum Geologists, Memoirs, 54, 349–370.
    [Google Scholar]
  50. Lundschien, B.A., Høy, T. & Mørk, A.
    2014. Triassic hydrocarbon potential in the Northern Barents Sea; integrating Svalbard and stratigraphic core data. Norwegian Petroleum Directorate Bulletin, 11, 3–20.
    [Google Scholar]
  51. Mello, M.R., Gaglianone, P.C., Brassell, S.C. & Maxwell, J.R.
    1988. Geochemical and biological marker assessment of depositional environments using Brazilian offshore oils. Marine and Petroleum Geology, 5, 205–223, http://doi.org/10.1016/0264-8172(88)90002-5
    [Google Scholar]
  52. Moldowan, J.M.
    1984. C30-steranes, novel markers for marine petroleums and sedimentary rocks. Geochimica et Cosmochimica Acta, 48, 2767–2768, http://doi.org/10.1016/0016-7037(84)90321-1
    [Google Scholar]
  53. Moldowan, J.M., Seifert, W.K., Arnold, E. & Clardy, J.
    1984. Structure proof and significance of stereoisomeric 28,30-bisnorhopanes in petroleum and petroleum source rocks. Geochimica et Cosmochimica Acta, 48, 1651–1661, http://doi.org/10.1016/0016-7037(84)90334-X
    [Google Scholar]
  54. Moldowan, J.M., Seifert, W.K. & Gallegos, E.J.
    1985. Relationship between petroleum composition and depositional environment of petroleum source rocks. American Association of Petroleum Geologists Bulletin, 69, 1255–1268.
    [Google Scholar]
  55. Moldowan, J.M., Dahl, J., Huizinga, B.J., Fago, F.J., Hickey, L.J., Peakman, T.M. & Winship-Taylor, D.
    1994. The molecular fossil record of oleanane and its relation to angiosperms. Science, 265, 768–771, http://doi.org/10.1126/science.265.5173.768
    [Google Scholar]
  56. Mørk, A. & Bjorøy, M.
    1984. Mesozoic source rocks on Svalbard. In: Spencer, A.M. et al. (eds) Petroleum Geology of the Northwest European Margin. Graham &Trotman, London, 371–382.
    [Google Scholar]
  57. Norlex
    Norlex. 2013. Lithostratigraphic Wall Chart, Offshore Norway . Norwegian Interactive Offshore Stratigraphic Lexicon, http://nhm2.uio.no/norlex/ [last accessed October 2013].
  58. Nøttvedt, A., Livbjerg, F., Midbøe, P.S. & Rasmussen, E.
    1993. Hydrocarbon potential of the Central Spitsbergen Basin. In: Vorren, T., Bergsager, E., Dahl-Stamnes, Ø.A., Holter, E., Johansen, B., Lie, E. & Lund, T.B. (eds) Arctic Geology and Petroleum Potential. Norwegian Petroleum Society, Special Publications, 2, 333–361.
    [Google Scholar]
  59. NPD
    . 2014. Factpages . Norwegian Petroleum Directorate, Stavanger, Norway, www.factpages.npd.no [last accessed August 2014].
  60. Nytoft, H.P., Bojesen-Koefoed, J.A. & Christiansen, F.G.
    2000. C26 and C28–C34 28-norhopanes in sediments and petroleum. Organic Geochemistry, 31, 25–39, http://doi.org/10.1016/S0146-6380(99)00150-3
    [Google Scholar]
  61. Ohm, S.E., Karlsen, D.A. & Austin, T.J.F.
    2008. Geochemically driven exploration models in uplifted areas: Examples from the Norwegian Barents Sea. American Association of Petroleum Geologists Bulletin, 92, 1191–1223.
    [Google Scholar]
  62. Opstad, H.O.
    2005. Facies og modenhetsrelasjoner mellom oljer og kondensater i Hammerfestbassenget. Master Thesis, University of Oslo, Oslo, Norway (in Norwegian).
    [Google Scholar]
  63. Ourisson, G., Albrecht, P. & Rohmer, M.
    1982. Predictive microbial biochemistry – from molecular fossils to prokaryotic membranes. Trends in Biochemical Sciences, 7, 236–239.
    [Google Scholar]
  64. Palacas, J.G., Anders, D.E. & King, J.D.
    1984. South Florida Basin. Prime example of carbonate source rocks of petroleum. In: Palacas, J.G. (ed) Petroleum Geochemistry and Source Rock Potential of Carbonate Rocks. American Association of Petroleum Geologists, Studies in Geology, 18, 71–96.
    [Google Scholar]
  65. Pedersen, J.H.
    2014. Mapping of petroleum systems in the south-western Barents Sea. Poster presented at the Arctic Conference Days 2014 , 2–6 June 2014, Tromsø, Norway.
  66. Pedersen, J.H., Karlsen, D.A., Brunstad, H. & Lie, J.E.
    2005. Oil and gas of the Norwegian Barents Sea. Paper presented at the AAPG Annual Convention 2005 , 19–22 June 2014, Calgary, Alberta, Canada.
  67. Pedersen, J.H., Karlsen, D.A., Backer-Owe, K., Lie, J.E. & Brunstad, H.
    2006. The geochemistry of two unusual oils from the Norwegian North Sea: implications for new source rocks and play scenario. Petroleum Geoscience, 12, 85–96, http://doi.org/10.1144/1354-079305-658
    [Google Scholar]
  68. Peters, K.E. & Moldowan, J.M.
    1991. Effect of source, thermal maturity and biodegradation on the distribution and isomerisation of homohopanes in petroleum. Organic Geochemistry, 17, 47–61, http://doi.org/10.1016/0146-6380(91)90039-M
    [Google Scholar]
  69. 1993. Interpreting Molecular Fossils in Petroleum and Ancient Sediments. The Biomarker Guide. Prentice-Hall, Englewood Cliffs, NJ, USA.
    [Google Scholar]
  70. Peters, K.E., Moldowan, J.M., Schoell, M. & Hempkins, W.B.
    1986. Petroleum isotopic and biomarker composition related to source rock organic matter and depositional environment. Organic Geochemistry, 10, 17–27, http://doi.org/10.1016/0146-6380(86)90006-9
    [Google Scholar]
  71. Peters, K.E., Walters, C.C. & Moldowan, J.M.
    2005. The Biomarker Guide. Cambridge University Press, Cambridge.
    [Google Scholar]
  72. Philp, R.P. & Gilbert, T.D.
    1986. Biomarker distributions in Australian oils predominantly derived from terrigenous source material. In: Leythauser, D. & Rullkötter, J. (eds) Advances in Organic Geochemistry 1985. Organic Geochemistry Series, 10. Pergamon Press, Oxford, 73–84.
    [Google Scholar]
  73. Rampen, S.W., Schouten, S. et al.
    2007. On the origin of 24-norcholestanes and their use as age-diagnostic biomarkers. Geology, 35, 419–422, http://doi.org/10.1130/G23358A.1
    [Google Scholar]
  74. Revill, A.T., Volkman, J.K., O'Leary, T., Summons, R.E., Boreham, C.J., Banks, M.R. & Denwer, K.
    1994. Hydrocarbon biomarkers, thermal maturity, and depositional setting of tasmanite oil shales from Tasmania, Australia. Geochimica and Cosmochimica Acta, 58, 3803–3822.
    [Google Scholar]
  75. Riis, F., Lundschien, B.A., Høy, T., Mørk, A. & Mørk, M.B.E.
    2008. Evolution of the Triassic shelf in the northern Barents Sea region. Polar Research, 27, 318–338, http://doi.org/10.1111/j.1751-8369.2008.00086.x
    [Google Scholar]
  76. Rodrigues Duran, E., di Primio, R., Anka, Z., Stoddart, D. & Horsfield, B.
    2013. Petroleum system analysis of the Hammerfest Basin (southwestern Barents Sea): Comparison of basin modelling and geochemical data. Organic Geochemistry, 63, 105–121, http://doi.org/10.1016/j.orggeochem.2013.07.011
    [Google Scholar]
  77. Rubinstein, I., Sieskind, O. & Albrecht, P.
    1975. Rearranged steranes in a shale: Occurrence and simulated formation. Journal of Chemical Society, 1, 1833–1836, http://doi.org/10.1039/P19750001833
    [Google Scholar]
  78. Sachsenhofer, R.F., Curry, D.J., Horsfield, B., Rantitsch, G. & Wilkes, H.
    1995. Characterization of organic matter in Late Cretaceous black shales of the Eastern Alps (Kainach Gosau Group, Austria). Organic Geochemistry, 23, 915–931, http://doi.org/10.1016/0146-6380(95)00072-0
    [Google Scholar]
  79. Schwark, L. & Empt, P.
    2006. Sterane biomarkers as indicators of Paleozoic algal evolution and extinction events. Palaeogeography, Palaeoclimate, Palaeoecology, 240, 225–223, http://doi.org/10.1016/j.palaeo.2006.03.050
    [Google Scholar]
  80. Shanmugam, G.
    1985. Significance of coniferous rain forests and related organic matter in generating commercial quantities of oil, Gippsland Basin, Australia. American Association of Petroleum Geologists Bulletin, 69, 1241–1254.
    [Google Scholar]
  81. Simoneit, B.R., Schoell, M., Dias, R.F. & Aquino Neto, F.R.
    1993. Unusual carbon isotope compositions of biomarker hydrocarbons in a Permian tasmanite. Geochimica et Cosmochimica Acta, 57, 4205–4211.
    [Google Scholar]
  82. Sofer, Z.
    1984. Stable carbon isotope compositions of crude oils: application to source depositional environments and petroleum alteration. American Association of Petroleum Geologists Bulletin, 68, 31–49.
    [Google Scholar]
  83. 1991. Stable isotopes in petroleum exploration. In: Merill, R.K., Foster, N.H. & Beaumont, E.A. (eds) Source and Migration Processes And Evaluation Techniques. Treatises of Petroleum Geology. American Association of Petroleum Geologists, Tulsa, OK, USA, 103–106.
    [Google Scholar]
  84. Stemmerik, L. & Worsley, D.
    2005. 30 years on – Arctic Upper Palaeozoic stratigraphy, depositional evolution and hydrocarbon prospectivity. Norwegian Journal of Geology, 85, 151–168.
    [Google Scholar]
  85. Stewart, D.J., Berge, K. & Bowlin, B.
    1995. Exploration trends in the Southern Barents Sea. In: Hanslien, S. (ed.) Petroleum Exploration and Exploitation in Norway. Norwegian Petroleum Society, Special Publications, 4, 253–276.
    [Google Scholar]
  86. Van Koeverden, J.H., Karlsen, D.A., Schwark, L., Chpitsglouz, A. & Backer-Owe, K.
    2010. Oil-prone Lower Carboniferous coals in the Norwegian Barents Sea: Implications for a Palaeozoic petroleum system. Journal of Petroleum Geology, 33, 155–181, http://doi.org/10.1111/j.1747-5457.2010.00471.x
    [Google Scholar]
  87. Vigran, J.O., Mørk, A., Forsberg, A.W., Weiss, H.M. & Weitschat, W.
    2008. Tasmanites-algae contributors to the Middle Triassic hydrocarbon source rocks of Svalbard and the Barents Shelf. Polar Research, 27, 298–317, http://doi.org/10.1111/j.1751-8369.2008.00084.x
    [Google Scholar]
  88. Vobes, S.J.
    1998. An organic geochemical study of oils and condensates from the Hammerfest Basin, southern Norwegian Barents Sea: Cand. Scient. thesis, University of Oslo, Oslo, Norway.
    [Google Scholar]
  89. Volkman, J.K., Alexander, R., Kagi, R.I., Noble, R.A. & Woodhouse, G.W.
    1983. A geochemical reconstruction of oil generation in the Barrow Sub-Basin of Western Australia. Geochimica et Cosmochimica Acta, 47, 2091–2105, http://doi.org/10.1016/0016-7037(83)90034-0
    [Google Scholar]
  90. Vorren, T.O., Richardsen, G. & Knutsen, S.M.
    1991. Cenozoic erosion and sedimentation in the western Barents Sea. Marine and Petroleum Geology, 8, 317–340, http://doi.org/10.1016/0264-8172(91)90086-G
    [Google Scholar]
  91. Worsley, D.
    2008. The post Caledonian development of Svalbard and the western Barents Sea. Polar Research, 27, 298–317, http://doi.org/10.1111/j.1751-8369.2008.00085.x
    [Google Scholar]
  92. Zumberge, J.E.
    1987. Prediction of source rock characteristics based on terpane biomarkers in crude oils: A multivariate statistical approach. Geochimica et Cosmochimica Acta, 51, 1625–1637, http://doi.org/10.1016/0016-7037(87)90343-7
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1144/petgeo2016-039
Loading
/content/journals/10.1144/petgeo2016-039
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error