1887

Abstract

Summary

In this study, we introduce a new database framework for levee investigation. We are considering on an equal footing geophysical and geotechnical investigation methods in order to assist the agencies and levee managers in selecting the most relevant methods for the levees’ characterization. For this to be possible, we are taking into account the environmental constraints, the pathologies and the failure modes of the levees. The other aspect of this work is to open new ways of reflection in the research community with an important bibliographic work being carried out. We first focus on the relations between pathological physical properties and failure modes of a levee in order to identify which properties and characteristics of a levee need to be estimated. Then, we display our new database framework using the example of the Electrical Resistivity Tomography method. This work finally insists on the benefits of such a structure to propose new method investigation combinations and to provide a significant quantity of references for the research community.

Loading

Article metrics loading...

/content/papers/10.3997/2214-4609.201702047
2017-09-03
2024-04-18
Loading full text...

Full text loading...

References

  1. Abu-Hassanein, Z.S., Benson, C.H. and Blotz, L.R.
    [1996] Electrical resistivity of compacted clays. Journal of Geotechnical Engineering, 122, 397–406.
    [Google Scholar]
  2. Archie, G.E.
    [1952] Classification of carbonate reservoir rocks and petrophysical considerations. Aapg Bulletin, 36, 278–298.
    [Google Scholar]
  3. Beck, Y.L.
    [2008] Evaluation de l’état hydrique d’un sol fin par méthodes électriques et électromagnétiques: Application géotechnique, PhD Thesis, Ecole Centrale de Nantes.
    [Google Scholar]
  4. Besson, A., Cousin, I., Dorigny, A., Dabas, M. and King, D.
    [2008] The temperature correction for the electrical resistivity measurements in undisturbed soil samples: Analysis of the existing conversion models and proposal of a new model. Soil Science, 173, 707–720.
    [Google Scholar]
  5. Bièvre, G.
    [2007] Méthodes géophysiques pour la reconnaissance des digues des voies navigables. Centre d’Études Techniques Maritimes et Fluviales.
    [Google Scholar]
  6. Chalikakis, K., Plagnes, V., Guerin, R., Valois, R. and Bosch, F.P.
    [2011] Contribution of geophysical methods to karst-system exploration: an overview. Hydrogeology Journal, 19, 1169–1180.
    [Google Scholar]
  7. François, D., Mériaux, P. and Monnet, J.
    [2016] Méthodologie de reconnaissance et de diagnostic de l’érosion interne des ouvrages hydrauliques en remblai. Presses des Ponts : Publications IREX.
    [Google Scholar]
  8. Huntley, D.
    [1986] Relations between permeability and electrical resistivity in granular aquifers. Ground Water, 24, 466–474.
    [Google Scholar]
  9. Karaoulis, M., Revil, A., Zhang, J. and Werkema, D.D.
    [2012] Time-lapse joint inversion of crosswell DC resistivity and seismic data: A numerical investigation. Geophysicsn, 77, D141–D157.
    [Google Scholar]
  10. Kearey, P., Brooks, M. and Hill, I.
    [2013] An introduction to geophysical exploration. John Wiley & Sons.
    [Google Scholar]
  11. Keller, G.V. and Frischknecht, F.C.
    [1966] Electrical methods in geophysical prospecting. Pergamon Press Inc.
    [Google Scholar]
  12. Kumar, D.
    [2012] Efficacy of electrical resistivity tomography technique in mapping shallow subsurface anomaly. Journal of the Geological Society of India, 80, 304–307.
    [Google Scholar]
  13. Mériaux, P., Tourment, R. and Wolff, M.
    [2005] Le patrimoine de digues de protection contre les inondations en France d’après la base de données nationale des ouvrages. Ingénieries-EAT, Special issue, 15–21.
    [Google Scholar]
  14. Ploix, M.-A., Garnier, V., Breysse, D. and Moysan, J.
    [2011] NDE data fusion to improve the evaluation of concrete structures. NDT & E International, 44, 442–448.
    [Google Scholar]
  15. Samouëlian, A., Cousin, I., Richard, G., Tabbagh, A. and Bruand, A.
    [2003] Electrical resistivity imaging for detecting soil cracking at the centimetric scale. Soil Science Society of America Journal, 67, 1319–1326.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/papers/10.3997/2214-4609.201702047
Loading
/content/papers/10.3997/2214-4609.201702047
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error