1887
Volume 16 Number 2
  • ISSN: 1569-4445
  • E-ISSN: 1873-0604

Abstract

ABSTRACT

Dielectric permittivity is a fundamental parameter for all investigations based on electromagnetic waves, particularly for moisture sounding. However, the physical principles of dielectric permittivity in natural materials and its influence on propagation velocity, the reflection coefficient, and the decay of the electromagnetic waves have been rarely addressed for variable substrate compositions or frequencies. Hence, this paper aims to fill this gap by systematically investigating quantitative relationships between dielectric permittivity and soil water content for a continuum of the three most common soil components in moderately temperate humid latitudes (i.e., illite, carbonate, and quartz‐rich sand). We carried out frequency‐dependent permittivity measurements for a large variety of artificial and natural substrates with an impedance analyser at frequencies ranging from 10 MHz to 1 GHz. Based on these measurements, we selected 200 MHz as the most commonly used frequency value for geological, ground‐penetrating radar applications and developed a set of empirical equations from third‐degree and ternary factorial diagrams to quantify the relationship between dielectric permittivity and volumetric moisture content of pure sand, clay, carbonate, and mixtures. The results show systematic trends, which can be explained by competing electrophysical properties of minerals and their wetting behaviour. This investigation shows that different wetting affinities of 1:1 and 2:1 clay minerals strongly control permittivity. Thresholds and non‐linearity effects were identified, where specific mineral properties and/or wetting processes became dominant in complex mixtures of soil materials. Bulk densities and porosities, respectively, were shown to have only minor influence compared with the impact of water. Consequently, the presented method is applicable to both undisturbed and disordered samples and, hence, to mobile devices or permanent installations in the field after compositional laboratory or onsite analyses. The permittivity of natural soils was measured in two field studies. The results show a good correlation between calculated and measured moisture contents. Our study confirms that the widely used Topp equation is only valid for sandy soil materials, i.e., the soil types it was originally designed for. For soils with a clay content >30% and/or a moisture level >20%, the new equations reduce the error in the level of permittivity measurements from up to 20% (using the Topp equation) to 5%.

Loading

Article metrics loading...

/content/journals/10.3997/1873-0604.2017050
2017-09-01
2024-04-19
Loading full text...

Full text loading...

References

  1. AliouaneN., HammoucheA., De DonckerR.W., TelliL., BoutahalaM. and BrahimiB.2002. Investigation of hydration and protonic conductivity of H‐montmorillonite.Solid State Ionics148, 103–110.
    [Google Scholar]
  2. ArconeA. and BoitnottG.E.2010. Complex permittivity of common minerals and one soil at low water contents.Publications of the Engineer Research and Development Center (ERDC), 5.
    [Google Scholar]
  3. AubertD., LoumagneC. and OudinL.2003. Sequential assimilation of soil moisture and streamflow data in a conceptual rainfall–runoff model.Journal of Hydrology280, 145–161.
    [Google Scholar]
  4. BuchenhorstD.2005. Anwendung von Radiowellen zur Erwärmung von Adsorbenzien und Katalysatoren.PhD thesis, University of HalleWittenberg, Germany.
    [Google Scholar]
  5. ChenY. and OrD.2006a. Effects of Maxwell‐Wagner polarization on soil complex dielectric permittivity under variable temperature and electrical conductivity.Water Resources Research42, W06423.
    [Google Scholar]
  6. ChenY. and OrD.2006b. Geometrical factors and interfacial processes affecting complex dielectric permittivity of partially saturated porous media.Water Resources Research42, W06423.
    [Google Scholar]
  7. CurtisJ.O.2001. Moisture effects on the dielectric properties of soils.IEEE Transactions on Geoscience and Remote Sensing39, 125–128.
    [Google Scholar]
  8. DavisJ.L. and AnnanA.P.1989. Ground‐penetrating radar for high resolution mapping of soil and rock stratigraphy.Geophysical Prospecting37, 531–551.
    [Google Scholar]
  9. DobsonM.C., UlabyF.T., HallikainenM.T. and El‐RayesM.A.1985. Microwave dielectric behavior of wet soils: II. Dielectric mixing models.IEEE Transactions on Geoscience and Remote Sensing23, 35–46.
    [Google Scholar]
  10. DoolittleJ.A., JenkinsonB., HopkinsD., UlmerM. and TuttleW.2006. Hydropedological investigations with ground‐penetrating radar (GPR). Estimating water‐table depths and local ground‐water flow pattern in areas of coarse‐textured soils.Geoderma121, 317–329.
    [Google Scholar]
  11. EndresA.L. and BertrandE.A.2006. A pore‐size scale model for the dielectric properties of water‐saturated clean rocks and soils.Geophysics71(6), 185–193.
    [Google Scholar]
  12. EvansN.G. and HamlynM.G.1997. Alkali metal and alkali earth carbonates at microwave frequencies, I: dielectric properties.Journal of Microwave Power and Electromagnetic Energy33(1), 24–26.
    [Google Scholar]
  13. GerberR., Felix‐HenningsenP., BehrensT. and ScholtenT.2010. Applicability of ground‐penetrating radar as a tool for nondestructive soil‐depth mapping on Pleistocene periglacial slope deposits.Journal of Plant Nutrition and Soil Science173, 174–184.
    [Google Scholar]
  14. GilliesR.R., CarlsonT.N., CuiJ., KustasW.P. and HumesK.S.1997. A verification of the ‘triangle’ method for obtaining surface soil water content and energy fluxes from remote measurements of the Normalized DiVerence Vegetation Index (NDVI) and surface radiant temperature.International Journal of Remote Sensing18(15), 3145–3166.
    [Google Scholar]
  15. GrimW.R.E.1962. Applied Clay Mineralogy. New York, USA: McGraw‐Hill Book Co.
    [Google Scholar]
  16. HindererM. and EinseleG.1995. Säure‐Einträge und Stoffumsätze im Buntsandstein‐Schwarzwald (Seebachgebiet, 8 Meßjahre).Zeitschrift der Deutschen Geologischen Gesellschaft146, 51–62.
    [Google Scholar]
  17. HippelA.R. von1954. Dielectric Materials and Applications. New York: Technology Press M.I.T., J. Wiley & Sons Inc., Chapman & Hall Ltd.
    [Google Scholar]
  18. HübnerC.1999. Entwicklung hochfrequenter Messverfahren zur Schneefeuchtebestimmung. PhD thesis, University of Karlsruhe, Germany.
    [Google Scholar]
  19. IgelJ.S., SchmalholzJ., AnschützH.R., WilhelmH., BrehW., HötzlH. et al. 2001. Methods for determining soil moisture with the ground penetrating radar (GPR).Proceedings of the Fourth International Conference on Electromagnetic Wave Interaction with Water and Moist Substances, Weimar.
    [Google Scholar]
  20. KirstenJ.2014. Entwicklung einer 4D‐Überwachung von Fließpfaden mit Hilfe von Georadar und elektromagnetisch aktivem Tracer.Diploma thesis, Technische Universität Darmstadt (unpublished).
    [Google Scholar]
  21. KnollM.D.1996. A petrophysical basis for ground penetrating radar and very early time electromagnetics: electrical properties of sand‐clay mixtures.PhD thesis, University of British Columbia.
    [Google Scholar]
  22. LauerK.2008. Horizontbezogene dielektrische Eigenschaften von Böden aus periglazären Lagen im Taunus.Master thesis, Justus‐Liebig‐Universität Gießen (unpublished).
    [Google Scholar]
  23. LeroyP. and RevilA.2004. A triple‐layer model of the surface electrochemical properties of clay minerals.Journal of Colloid and Interface Science270, 371–380.
    [Google Scholar]
  24. LichteneckerK. and RotherK.1931. Die Herleitung des logarithmischen Mischungsgesetzes aus allgemeinen Prinzipien der stationären Strömung.Physikalische Zeitschrift32, 255–260.
    [Google Scholar]
  25. MalickiM.A., PlaggeR. and RothC.H.1996. Improving the calibration of dielectric TDR soil moisture determination taking into account the solid soil.European Journal of Soil Science47, 357–366.
    [Google Scholar]
  26. MüllerM., MohnkeO., SchmalholzJ. and YamaranciU.2003. Moisture assessment with small‐scale geophysics—the Interurban project.Near Surface Geophysics1(4), 173–181.
    [Google Scholar]
  27. NoborioK.2001. Measurement of soil water content and electrical conductivity by time domain reflectometry: a review.Computers and Electronics in Agriculture31, 213–237.
    [Google Scholar]
  28. NussbergerM.2005. Soil moisture determination with TDR: single‐rod probes and profile reconstruction algorithms.PhD thesis, ETH Zürich.
    [Google Scholar]
  29. PeplinskiN.R., UlabyF.T. and DobsonM.C.1995. Dielectric properties of soils in the 0.3–1.3‐GHz range.IEEE Transactions on Geoscience and Remote Sensing33, 803–807.
    [Google Scholar]
  30. PoinsignonC.1997. Protonic conductivity and water dynamics in swelling clays.Solid State Ionics97, 399–407.
    [Google Scholar]
  31. PolsterH., BuwertC., HerrmannP., PötkeW., TrätnerA. and WensR.1995. Sanierungsgrundlagen Plattenbau ‐ Prüfverfahren. Hrsg.: Institut für Erhaltung und Modernisierung von Bauwerken e.V. (IEMB), Fraunhofer IRB Verlag, Stuttgart, Kap. 3. Prüfungen von Baustoffen und des Korrosionsschutzes.
    [Google Scholar]
  32. PrideS.1994. Governing equations for the coupled electromagnetics and acoustics of porous media.Physical Review B50(15), 678–696.
    [Google Scholar]
  33. RevilA.2012. Effective conductivity and permittivity of unsaturated porous materials in the frequency range 1 mHz–1GHz.Water Resources Research49, 1–22.
    [Google Scholar]
  34. RevilA., KochK. and HolligerK.2012. Is it the grain size or the characteristic pore size that controls the induced polarization relaxation time of clean sand and sandstones?Water Resources Research49, W05060.
    [Google Scholar]
  35. RostA.1978. Messung dielektrischer Stoffeigenschaften, 1st edn. Berlin: Akademie Verlag.
    [Google Scholar]
  36. RothK., SchulinR., FlühlerH. and AttingerW.1990. Calibration of time domain reflectometry for water content measurements using a composite dielectric approach.Water Resources Research26, 2267–2273.
    [Google Scholar]
  37. RothC.H., MalickiM.A. and PlaggeR.1992. Empirical evaluation of the relationship between soil dielectric constant and volumetric water content as the basis for calibrating soil moisture measurements by TDR.Journal of Soil Science43(1), 1–13.
    [Google Scholar]
  38. RothK.2008. Scaling of water flow through porous media and soils.European Journal of Soil Science59(1), 125–130.
    [Google Scholar]
  39. SalatC. and JungeA.2010. Dielectric permittivity of fine‐grained fractions of soil samples from eastern Spain at 200 MHz.Geophysics75(1), 1–9.
    [Google Scholar]
  40. SchefferP. and SchachtschabelP.1989. Lehrbuch der Bodenkunde, Ulmer, Stuttgart.
    [Google Scholar]
  41. SchwartzR.C., EvettS.R., PelletierM.G. and BellJ.M.2009. Complex permittivity model for time domain reflectometry soil water content sensing: I. Theory.Soil Science Society of America journal73, 886–897.
    [Google Scholar]
  42. SeegerTh., KasparE., KlaibeB. and EinseleG.1989. Periglaziale Deckschichten und ihre hydrogeologische Bedeutung in Kammlagen des Buntsandstein‐Nordschwarzwaldes.Jh. geol. Landesamt Bad‐Wttb31, 197–213.
    [Google Scholar]
  43. TakahashiK., IgelJ., PreetzH. and KurodaS.2012. Basics and application of ground‐penetrating radar as a tool for monitoring irrigation process. In: Problems, Perspectives and Challenges of Agricultural Water Management (ed M.KUMAR .), pp. 155–180. InTech Open Science, Rijeka.
    [Google Scholar]
  44. ToppG.C., DavisJ.L. and AnnanA.P.1980. Electromagnetic determination of soil water content: measurements in coaxial transmission lines.Water Resources Research16(3), 574–582.
    [Google Scholar]
  45. ToppG.C., DavisJ.L. and AnnanA.P.1982. Electromagnetic determination of water content using TDR: II. Evaluation of installation and configuration of parallel transmission lines.Soil Science Society of America Journal46, 678–684.
    [Google Scholar]
  46. TronickeJ. and HamannG.2014. Vertical radar profiling: Combined analysis of traveltimes, amplitudes, and reflections.Geophysics79, 23–35.
    [Google Scholar]
  47. Van Der KrukJ., KlotzscheA., LavoueF., MelesG.A., JacobR.W., DoetschJ.A. et al. 2011. High resolution hydrogeophysical imaging and characterization.International Water Technology Journal, IWTC 1, 37–47.
    [Google Scholar]
  48. VaradanV.V. and RoR.2006. Analyticity, causality, energy conservation and the sign of the imaginary part of the permittivity and permeability.Digest, IEEE Antennas and Propagation Society International Symposium, 499–502.
    [Google Scholar]
  49. WagnerN. and ScheuermannA.2009. On the relationship between matric potential and dielectric properties of organic free soils: a sensitivity study.Canadian Geotechnical Journal46(10), 1202–1215.
    [Google Scholar]
  50. WaxmanM.H. and SmithsL.J.M.1968. Electrical conductivity in oil‐bearing shaly sands.Society of Petroleum Engineering Journal8, 107–122.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.3997/1873-0604.2017050
Loading
/content/journals/10.3997/1873-0604.2017050
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error