1887
Volume 66 Number 1
  • E-ISSN: 1365-2478

Abstract

ABSTRACT

Acoustic impedance is one of the best attributes for seismic interpretation and reservoir characterisation. We present an approach for estimating acoustic impedance accurately from a band‐limited and noisy seismic data. The approach is composed of two stages: inverting for reflectivity from seismic data and then estimating impedance from the reflectivity inverted in the first stage. For the first stage, we achieve a two‐step spectral inversion that locates the positions of reflection coefficients in the first step and determines the amplitudes of the reflection coefficients in the second step under the constraints of the positions located in the first step. For the second stage, we construct an iterative impedance estimation algorithm based on reflectivity. In each iteration, the iterative impedance estimation algorithm estimates the absolute acoustic impedance based on an initial acoustic impedance model that is given by summing the high‐frequency component of acoustic impedance estimated at the last iteration and a low‐frequency component determined in advance using other data. The known low‐frequency component is used to restrict the acoustic impedance variation tendency in each iteration. Examples using one‐ and two‐dimensional synthetic and field seismic data show that the approach is flexible and superior to the conventional spectral inversion and recursive inversion methods for generating more accurate acoustic impedance models.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.12538
2017-06-13
2024-04-20
Loading full text...

Full text loading...

References

  1. BaddariK., DjarfourN., AïfaT. and FerahtiaJ.2010. Acoustic impedance inversion by feedback artificial neural network. Journal of Petroleum Science and Engineering71(3–4), 106–111.
    [Google Scholar]
  2. BaetenG., de MaagJ.W., PlessixR.E., KlaassenR., QureshiT., KleemeyerM.et al. 2013. The use of low frequencies in a full‐waveform inversion and impedance inversion land seismic case study. Geophysical Prospecting61(4), 701–711.
    [Google Scholar]
  3. CerneyB. and BartelD.C.2007. Uncertainties in low‐frequency acoustic impedance models. The Leading Edge26(1), 74–87.
    [Google Scholar]
  4. ChaiX., LiZ., HanW. and LiuL.2012. Spectral inversion method analysis based on the LSQR algorithm. Geophysical Prospecting for Petroleum51(1), 11–18 (in Chinese).
    [Google Scholar]
  5. CookeD.A. and SchneiderW.A.1983. Generalized linear inversion of reflection seismic data. Geophysics48(6), 665–676.
    [Google Scholar]
  6. de AlmeidaJ.A.2010. Stochastic simulation methods for characterization of lithoclasses in carbonate reservoirs. Earth‐Science Reviews101(3–4), 250–270.
    [Google Scholar]
  7. FarfourM., YoonW.J. and KimJ.2015. Seismic attributes and acoustic impedance inversion in interpretation of complex hydrocarbon reservoirs. Journal of Applied Geophysics114, 68–80.
    [Google Scholar]
  8. FomelS.2007. Shaping regularization in geophysical‐estimation problems. Geophysics72(2), R29–R36.
    [Google Scholar]
  9. GardnerG.H.F., GardnerL.W. and GregoryA.R.1974. Formation velocity and density—The diagnostic basics for stratigraphic traps. Geophysics39(6), 770–780.
    [Google Scholar]
  10. GholamiA.2015. Nonlinear multichannel impedance inversion by total‐variation regularization. Geophysics80(5), R217–R224.
    [Google Scholar]
  11. HamidH. and PidliseckyA.2015. Multitrace impedance inversion with lateral constraints. Geophysics80(6), M101–M111.
    [Google Scholar]
  12. HansenP.C. and O'LearyD.P.1993. The use of the L‐curve in the regularization of discrete ill‐posed problems. SIAM Journal on Scientific Computing14(6), 1487–1503.
    [Google Scholar]
  13. HerreraR.H. and van der BaanM.2012. Short‐time homomorphic wavelet estimation. Journal of Geophysics and Engineering9(6), 674–686.
    [Google Scholar]
  14. HondoriE.J., MikadaH., GotoT.N. and TakekawaJ.2013. A random layer‐stripping method for seismic reflectivity inversion. Exploration Geophysics44(2), 70–76.
    [Google Scholar]
  15. HuangZ. and ZhangJ.2014. Determination of parameters of subsurface layers using GPR spectral inversion method. IEEE Transactions on Geoscience and Remote Sensing52(12), 7527–7533.
    [Google Scholar]
  16. LavergneM.1975. Pseudo‐diagraphies de vitesse en offshore profound. Geophysical Prospecting23(4), 695–711.
    [Google Scholar]
  17. LindsethR.O.1979. Synthetic sonic logs—A process for stratigraphic interpretation. Geophysics44(1), 3−26.
    [Google Scholar]
  18. LiuC., SongC., LuQ., LiuY., FengX. and GaoY.2015. Impedance inversion based on L1 norm regularization. Journal of Applied Geophysics120, 7–13.
    [Google Scholar]
  19. LiuJ., ZhangJ., SunY. and ZhaoT.2016. Comparison of methods for seismic wavelet estimation. Progress in Geophysics31(2), 723–731 (in Chinese).
    [Google Scholar]
  20. MadibaG.B. and McMechanG.A.2003. Seismic impedance inversion and interpretation of a gas carbonate reservoir in the Alberta Foothills, western Canada. Geophysics68(5), 1460–1469.
    [Google Scholar]
  21. NascimentoT.M., MenezesP.T.L. and BragaI.L.2014. High‐resolution acoustic impedance inversion to characterize turbidites at Marlim Field, Campos Basin, Brazil. Interpretation2(3), T143–T153.
    [Google Scholar]
  22. OldenburgD.W., LevyS. and StinsonK.1984. Root‐mean‐square velocities and recovery of the acoustic impedance. Geophysics49(10), 1653–1663.
    [Google Scholar]
  23. OldenburgD.W., ScheuerT. and LevyS.1983. Recovery of the acoustic impedance from reflection seismograms. Geophysics48(10), 1318–1337.
    [Google Scholar]
  24. PortniaguineO. and CastagnaJ. P.2005. Spectral inversion: lessons from modeling and Boonesville case study. SEG annual meeting, Houston, TX, 1638–1641.
    [Google Scholar]
  25. PuryearC.I. and CastagnaJ.P.2008. Layer‐thickness determination and stratigraphic interpretation using spectral inversion: theory and application. Geophysics73(2), R37–R48.
    [Google Scholar]
  26. RussellB. and HampsonD.1991. Comparison of poststack seismic inversion methods. SEG annual meeting, Houston, TX, 876–878.
    [Google Scholar]
  27. SarwarA.K.M.1991. Impedance inversion experiments with simulated data. Journal of Geophysical Research: Solid Earth96(B5), 7947–7960.
    [Google Scholar]
  28. TarantolaA. and ValetteB.1982. Generalized nonlinear inverse problems solved using the least squares criterion. Reviews of Geophysics20(2), 219–232.
    [Google Scholar]
  29. TikhonovA.1963. Solution of incorrectly formulated problems and the regularization method. Soviet Mathematics Doklady5, 1035–1038.
    [Google Scholar]
  30. VelisD.R.2008. Stochastic sparse‐spike deconvolution. Geophysics73(1), R1–R9.
    [Google Scholar]
  31. VersteegR.1994. The Marmousi experience: velocity model determination on a synthetic complex data set. The Leading Edge13(9), 927–936.
    [Google Scholar]
  32. VesnaverA.L., BöhmG., MadrussaniG., PetersenS.A. and RossiG.1999. Tomographic imaging by reflected and refracted arrivals at the North Sea. Geophysics64(6), 1852–1862.
    [Google Scholar]
  33. WagnerC., GonzalezA., AgarwalV., KoesoemadinataA., NgD., TraresS.et al. 2012. Quantitative application of poststack acoustic impedance inversion to subsalt reservoir development. The Leading Edge31(5), 528–537.
    [Google Scholar]
  34. WangJ., WangS., YuanS., LiJ. and YinH.2014. Stochastic spectral inversion for sparse‐spike reflectivity by presetting the number of non‐zero spikes as a prior sparsity constraint. Journal of Geophysics and Engineering11(1), 015010.
    [Google Scholar]
  35. WigginsR.A.1978. Minimum entropy deconvolution. Geoexploration16(1), 21–35.
    [Google Scholar]
  36. YuanS. and WangS.2013. Spectral sparse Bayesian learning reflectivity inversion. Geophysical Prospecting61(4), 735–746.
    [Google Scholar]
  37. ZhangH., ShangZ. and YangC.2009. Adaptive reconstruction method of impedance model with absolute and relative constraints. Journal of Applied Geophysics67(2), 114–124.
    [Google Scholar]
  38. ZhangJ., ShiT., ZhaoY. and ZhouH.2014. Static corrections in mountainous areas using Fresnel‐wavepath tomography. Journal of Applied Geophysics111, 242–249.
    [Google Scholar]
  39. ZhangR. and CastagnaJ.2011. Seismic sparse‐layer reflectivity inversion using basis pursuit decomposition. Geophysics76(6), R147–R158.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/1365-2478.12538
Loading
/content/journals/10.1111/1365-2478.12538
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): Acoustic impedance; Reflection coefficients; Seismic data; Spectral inversion

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error