1887
Volume 30, Issue 1
  • E-ISSN: 1365-2117

Abstract

Abstract

The Chatham Rise is located offshore of New Zealand's South Island. Vast areas of the Chatham Rise are covered in circular to elliptical seafloor depressions that appear to be forming through a bathymetrically controlled mechanism, as seafloor depressions 2–5 km in diameter are found in water depths of 800–1100 m. High‐resolution P‐Cable 3D seismic data were acquired in 2013 across one of these depressions. The seafloor depression is interpreted as a mounded contourite. Our data reveal several smaller buried depressions (<20–650 m diameter) beneath the mounded contourite that we interpret as paleo‐pockmarks. These pockmarks are underlain by a complex polygonal fault system that deforms the strata and an unusual conical feature results. We interpret the conical feature as a sediment remobilization structure based on the presence of stratified reflections within the feature, RMS amplitude values and lack of velocity anomaly that would indicate a nonsedimentary origin. The sediment remobilization structure, polygonal faults and paleo‐depressions are the indicators of the past subsurface fluid flow. We hypothesize that the pockmarks provided the necessary topographic roughness for the formation of the mounded contourites thus linking fluid expulsion and the deposition of contouritic drifts.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12237
2017-03-16
2024-03-28
Loading full text...

Full text loading...

References

  1. Bialas, J., Klaucke, I. & Mögeltönder, J. (2013) Rv Sonne Cruise Report So‐226 Chrimp ‐ Chatham Rise Methane Pockmarks, Helmholtz Centre for Ocean Research Kiel. Kiel, 126.
  2. Bünz, S. & Mienert, J. (2004) Acoustic imaging of gas hydrate and free gas at the Storegga Slide. J. Geophys. Res. Solid Earth., 109, B04102. doi: 10.1029/2003JB002863.
    [Google Scholar]
  3. Bünz, S., Polyanov, S., Vadakkepuliyambatta, S., Consolaro, C. & Mienert, J. (2012) Active gas venting through hydrate‐bearing sediments on the vestnesa ridge, offshore W‐Svalbard. Mar. Geol., 332, 189–197.
    [Google Scholar]
  4. Carter, R.M., McCAve, I.N. & Carter, L. (2004) Leg 181 synthesis: fronts, flows, drifts, volcanoes, and the evolution of the southwestern gateway to the Pacific Ocean, eastern New Zealand. In: Proceedings ODP Scientific Results, 181 (Ed. by C.Richter ), pp. 1–111. Ocean Drilling Program, College Station, TX.
    [Google Scholar]
  5. Cartwright, J. & Lonergan, L. (1996) Volumetric contraction during the compaction of mudrocks: a mechanism for the development of regional‐scale polygonal fault systems. Basin Res., 8(2), 183–193.
    [Google Scholar]
  6. Collins, J.A., Molnar, P. & Sheehan, A.F. (2011) Multibeam bathymetric surveys of submarine volcanoes and mega‐pockmarks on the Chatham Rise, New Zealand. NZ J. Geol. Geophys., 54(3), 329–339.
    [Google Scholar]
  7. Crutchley, G.J., Berndt, C.B., Klaeschen, D. & Masson, D.G. (2011) Insights into active deformation in the Gulf of Cadiz from new 3D seismic and high resolution bathymetry data. Geochem. Geophys. Geosyst., 12(7), 1525–2027.
    [Google Scholar]
  8. Cullen, D.J. (1962) The significance of a glacial erratic from the Chatham Rise, East of New Zealand. NZ J. Geol. Geophys., 5(2), 309–313.
    [Google Scholar]
  9. Davy, B. (2014) Rotation and offset of the Gondwana convergent margin in the New Zealand region following cretaceous jamming of Hikurangi plateau large igneous province subduction. Tectonics, 33(8), 1577–1595.
    [Google Scholar]
  10. Davy, B. & Wood, R. (1994) Gravity and magnetic modelling of the Hikurangi Plateau. Mar. Geol., 118(1–2), 139–151.
    [Google Scholar]
  11. Davy, B., Hoernle, K. & Werner, R. (2008) Hikurangi Plateau: crustal structure, rifted formation, and gondwana subduction history. Geochem. Geophys. Geosyst., 9(7), Q07004. doi: 10.1029/2007GC001855
    [Google Scholar]
  12. Davy, B., Pecher, I., Wood, R., Carter, L. & Gohl, K. (2010) Gas escape features off New Zealand: evidence of massive release of methane from hydrates. Geophys. Res. Lett., 37(21), L21309. doi: 10.1029/2010GL045184
    [Google Scholar]
  13. Duarte, J.C., Terrinha, P., Rosas, F.M., Valadares, V., Pinheiro, L.M., Matias, L., Magalhaes, V. & Roque, C. (2010) Crescent‐shaped morphotectonic features in the Gulf of Cadiz (offshore SW Iberia). Mar. Geol., 271(3–4), 236–249.
    [Google Scholar]
  14. Farfour, M., Yoon, W.J., Ferahtia, J. & Djarfour, N. (2012) Seismic attributes combination to enhance detection of bright spot associated with hydrocarbons. Geosystem Eng., 15(3), 143–150.
    [Google Scholar]
  15. Faugères, J.‐C., Stow, D.A., Imbert, P. & Viana, A. (1999) Seismic features diagnostic of contourite drifts. Mar. Geol., 162(1), 1–38.
    [Google Scholar]
  16. Faure, K., Greinert, J., Pecher, I.A., Graham, I.J., Massoth, G.J., De Ronde, C.E., Wright, I.C., Baker, E.T. & Olson, E.J. (2006) Methane seepage and its relation to slumping and gas hydrate at the Hikurangi Margin, New Zealand. NZ J. Geol. Geophys., 49(4), 503–516.
    [Google Scholar]
  17. Fildani, A., Normak, W.R., Kostic, S. & Parker, G. (2006) Channel formation by flow stripping: large‐scale scour features along the Monterey East Channel and their relation to sediment waves. Sedimentology, 53(6), 1265–1287.
    [Google Scholar]
  18. Gay, A. & Berndt, C. (2007) Cessation/Reactivation of polygonal faulting and effects on fluid flow in the Vøring Basin, Norwegian Margin. J. Geol. Soc., 164(1), 129–141.
    [Google Scholar]
  19. Gay, A., Lopez, M., Berndt, C. & Seranne, M. (2007) Geological controls on focused fluid flow associated with seafloor seeps in the Lower Congo Basin. Mar. Geol., 244(1), 68–92.
    [Google Scholar]
  20. Greinert, J., Lewis, K., Bialas, J., Pecher, I.A., Rowden, A., Bowden, D., De Batist, M. & Linke, P. (2010) Methane seepage along the Hikurangi Margin, New Zealand: overview of studies in 2006 and 2007 and new evidence from visual, bathymetric and hydroacoustic investigations. Mar. Geol., 272(1), 6–25.
    [Google Scholar]
  21. Hamilton, L. (1978) Sound velocity‐density relations in seafloor sediments and rocks. J. Acoust. Soc. America, 63(2), 366–377.
    [Google Scholar]
  22. Hansen, J., Cartwright, J., Huuse, M. & Clausen, O.R. (2005) 3D seismic expression of fluid migration and mud remobilization on the Gjallar Ridge, offshore mid‐norway. Basin Res., 17(1), 123–139.
    [Google Scholar]
  23. Hardy, S. & McClay, K. (1999) Kinematic modelling of extensional fault‐propogration folding. J. Struct. Geol., 21(7), 695–702.
    [Google Scholar]
  24. Harrington, P.K. (1985) Formation of pockmarks by pore‐water escape. Geo‐Mar. Lett., 5, 193–197.
    [Google Scholar]
  25. Hernandez‐Molina, F.J., Maldonado, A. & Stow, D.A.V. (2008) Abyssal plain contourites. Dev. Sedimentol., 60, 345–378.
    [Google Scholar]
  26. Hillman, J.I., Gorman, A.R. & Pecher, I.A. (2014) Geostatistical analysis of seafloor depressions on the Southeast margin of New Zealand's South Island‐investigating the impact of dynamic near seafloor processes on geomorphology. Mar. Geol., 360, 70–83.
    [Google Scholar]
  27. Holbrook, W.S., Hoskins, H., Wood, W.T., Stephen, R.A. & Lizarralde, D. (1996) Methane hydrate and free gas on the blake ridge from vertical seismic profiling. Science, 273 (5283), 1840.
    [Google Scholar]
  28. Hovland, M., Gardner, J. & Judd, A. (2002) The significance of pockmarks to understanding fluid flow processes and geohazards. Geofluids, 2(2), 127–136.
    [Google Scholar]
  29. Hustoft, S., Bünz, S., Mienert, J. & Chand, S. (2009) Gas hydrate reservoir and active methane‐venting province in sediments on <20 Ma young oceanic crust in the fram strait, offshore Nw‐Svalbard. Earth Planet. Sci. Lett., 284(1), 12–24.
    [Google Scholar]
  30. Huuse, M., Jackson, C.A.L., Van Rensbergen, P., Davies, R.J., Flemings, P.B. & Dixon, R.J. (2010) Subsurface sediment remobilization and fluid flow in sedimentary basins: an overview. Basin Res., 22(4), 342–360.
    [Google Scholar]
  31. Judd, A.G. (2003) The global importance and context of methane escape from the seabed. Geo‐Mar. Lett., 23(3–4), 147–154.
    [Google Scholar]
  32. Judd, A. & Hovland, M. (2007) Seabed Fluid Flow: The Impact on Geology, Biology and the Marine Environment. Cambridge University Press, Cambridge.
    [Google Scholar]
  33. Karstens, J. & Berndt, C. (2015) Seismic chimneys in the Southern Viking Graben‐Implications for palaeo fluid migration and overpressure evolution. Earth Planet. Sci. Lett., 412, 88–100.
    [Google Scholar]
  34. Krabbenhoeft, A., Bialas, J., Klaucke, I., Cruthcley, G., Papenberg, C. & Netzeband, G.L. (2013) Patterns of subsurface fluid‐flow at cold seeps: the Hikurangi Margin, offshore New Zealand. Mar. Pet. Geol., 39(1), 59–73.
    [Google Scholar]
  35. Lewis, K., Bennett, D., Herzer, R. & Vonderborch, C. (1986) Seismic stratigraphy and structure adjacent to an evolving plate boundary, Western Chatham Rise, New‐Zealand. Init. Rep. Deep Sea Drilling Proj., 90, 1325.
    [Google Scholar]
  36. Ligtenberg, J. (2005) Detection of fluid migration pathways in seismic data: implications for fault seal analysis. Basin Res., 17(1), 141–153.
    [Google Scholar]
  37. Lu, H., Fulthorpe, C.S. & Mann, P. (2003) Three‐Dimensional architecture of shelf‐building sediment drifts in the offshore Canterbury Basin, New Zealand. Mar. Geol., 193(1), 19–47.
    [Google Scholar]
  38. Magee, C., Jackson, C.A.L. & Schofield, N. (2003) The influence of normal geometry on igneous sill emplacement and morphology. Geology, 41(4), 407–410.
    [Google Scholar]
  39. Mitchum, R.M., Vail, P.R. & Sangree, J.B. (1977) Seismic Stratigraphy and global changes of sea level: Part 6 Stratigraphic interpretation of seismic reflection patterns in depositional sequences. In: Seismic Stratigraphy – Applications to Hydrocarbon Exploration (Ed. by PaytonC.E. ) AAPG Memoir., Tulsa, OK, Vol. 26, 117–133.
    [Google Scholar]
  40. Petersen, C.J., Bünz, S., Hustoft, S., Mienert, J. & Klaeschen, D. (2010) High‐resolution P‐Cable 3D seismic imaging of gas chimney structures in gas hydrated sediments of an arctic sediment drift. Mar. Pet. Geol., 27(9), 1981–1994.
    [Google Scholar]
  41. Piper, D.J.W. & Normak, W.R. (2009) Processes that initiate turbidity currents and their influence on turbidites: a marine geology perspective. J. Sediment. Res., 79(6), 347–362.
    [Google Scholar]
  42. Planke, S. & Berndt, C. (2007) Apparatus for Seismic Measurements, U.S. Patent No. 7,221,620. U.S. Patent and Trademark Office, Washington, DC.
    [Google Scholar]
  43. Planke, S., Symonds, P.A., Alvestand, E., & Kogseid, J. (2000) Seismic volcanostratigraphy of large‐volume basaltic extrusive complexes on rifted margins. J. Geophys. Res., 105, 19335–19351.
    [Google Scholar]
  44. Plaza‐Faverola, A., Bünz, S., Johnson, J.E., Chand, S., Knies, J., Mienert, J. & Franek, P. (2015) Role of tectonic stress in seepage evolution along the gas hydrate‐charged vestnesa ridge, Fram Strait. Geophys. Res. Lett., 42(3), 733–742.
    [Google Scholar]
  45. Stow, D. & Faugères, J.‐C. (2008) Contourite facies and the facies model. Dev. Sedimentol., 60, 223–256.
    [Google Scholar]
  46. Stow, D. & Lovell, J. (1979) Contourites: their recognition in modern and ancient sediments. Earth Sci. Rev., 14(3), 251–291.
    [Google Scholar]
  47. Stow, D.A., Faugères, J.‐C., Howe, J.A., Pudsey, C.J. & Viana, A.R. (2002) Bottom currents, contourites and deep‐sea sediment drifts: current state‐of‐the‐art. Geol. Soc. London Mem., 22(1), 7–20.
    [Google Scholar]
  48. Timm, C., Hoernle, K., Werner, R., Hauff, F., van den Bogaard, P., White, J., Mortimer, N. & Garbe‐Schoenberg, D. (2010) Temporal and geochemical evolution of the Cenozoic intraplate volcanism of Zealandia. Earth Sci. Rev., 98(1), 38–64.
    [Google Scholar]
  49. Uenzelmann‐Neben, G., Grobys, J., Gohl, K. & Barker, D. (2009) Neogene sediment structures in Bounty Trough, eastern New Zealand: Influence of magmatic and oceanic current activity. Geol. Soc. Am. Bull., 121(1–2), 134–149.
    [Google Scholar]
  50. Van Rensbergen, P., Hillis, R.R., Maltman, A.J. & Morley, C.K. (2003) Subsurface sediment mobilization: introduction. Geol. Soc. London. Spec. Publ., 216(1), 1–8.
    [Google Scholar]
  51. Vogt, P.R., Crane, K., Sundvor, E., Max, M.D. & Pfirman, S.L. (1994) Methane‐Generated (?) pockmarks on young, thickly sedimented oceanic crust in the arctic: vestnesa ridge, Fram Strait. Geology, 22(3), 255–258.
    [Google Scholar]
  52. Watterson, J., Walsh, J., Nicol, A., Nell, P. & Bretan, P. (2000) Geometry and origin of a polygonal fault system. J. Geol. Soc., 157(1), 151–162.
    [Google Scholar]
  53. Winkler, A. & Dullo, W.‐C. (2002) Data report: miocene to pleistocene sedimentation pattern on the Chatham Rise, New Zealand. Proc. ODP Sci. Results, 181.
    [Google Scholar]
  54. Wood, R. & Davy, B. (1994) The Hikurangi Plateau. Mar. Geol., 118(1), 153–173.
    [Google Scholar]
  55. Wood, R. & Herzer, R. (1993) The Chatham Rise, New Zealand. South Pacific Sediment. Basins Sediment. Basins World, 2, 329–349.
    [Google Scholar]
  56. Zhao, F., Wu, S., Sun, Q., Huuse, M., Li, W. & Wang, Z. (2014) Submarine volcanic mounds in the Pearl River Mouth Basin, northern South China Sea. Mar. Geol., 355, 162–172.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12237
Loading
/content/journals/10.1111/bre.12237
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error