1887
Volume 30, Issue 1
  • E-ISSN: 1365-2117

Abstract

Abstract

It is crucial to understand lateral differences in paleoclimate and weathering in order to fully understand the evolution of the Himalayan mountain belt. While many studies have focused on the western and central Himalaya, the eastern Himalaya remains poorly studied with regard to paleoclimate and past weathering history. Here, we present a multi‐proxy study on the Mio‐Pliocene sedimentary foreland‐basin section along the Kameng River in Arunachal Pradesh, northeast India, in order to obtain better insight in the weathering history of the eastern Himalaya. We analysed a continuous sedimentary record over the last 13 Ma. Heavy‐mineral and petrography data give insight into diagenesis and provenance, showing that the older part of the section is influenced by diagenesis and that sediments were not only deposited by a large Trans‐Himalayan river and the palaeo‐Kameng river, but also by smaller local tributaries. By taking into account changes in diagenesis and provenance, results of clay mineralogy and major element analysis show an overall increase in weathering intensity over time, with a remarkable change between . 10 and . 8 Ma.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12242
2017-05-29
2024-04-25
Loading full text...

Full text loading...

References

  1. Armstrong, H.A. & Allen, M.B. (2010) Shifts in the Intertropical Convergence Zone, Himalayan exhumation, and late Cenozoic climate. Geology, 39(1), 11–14.
    [Google Scholar]
  2. van der Beek, P., Robert, X., Mugnier, J.‐L., Bernet, M., Huyghe, P. & Labrin, E. (2006) Late Miocene – Recent exhumation of the central Himalaya and recycling in the foreland basin assessed by apatite fission‐track thermochronology of Siwalik sediments, Nepal. Basin Res., 18(4), 413–434.
    [Google Scholar]
  3. Bookhagen, B. & Burbank, D.W. (2006) Topography, relief, and TRMM‐derived rainfall variations along the Himalaya. Geophys. Res. Lett., 33(8), L08405.
    [Google Scholar]
  4. Bouchez, J., Gaillardet, J., Lupker, M., Louvat, P., France‐Lanord, C., Maurice, L., Armijos, E. & Moquet, J.‐S. (2012) Floodplains of large rivers: weathering reactors or simple silos?Chem. Geol., 332–333, 166–184.
    [Google Scholar]
  5. Burgess, P.W., Yin, A., Dubey, C.S., Shen, Z.‐K. & Kelty, T.K. (2012) Holocene shortening across the Main Frontal Thrust zone in the eastern Himalaya. Earth Planet. Sci. Lett., 357–358, 152–167.
    [Google Scholar]
  6. Capet, X., Chamley, H., Beck, C. & Holtzappel, T. (1990) Clay mineralogy of ODP sites 671 and 672, barbados ridge accretionary complex and Atlantic Abyssal plain: palaeoenvironmental and diagenetic implications. In: Proceedings of the Ocean Drilling Program, Scientifc Results, Vol. 110 (Ed. by A.Mascle , J.C.Moore & E.Taulor , et al.), pp. 85–96. Ocean Drilling Program, College Station, TX.
    [Google Scholar]
  7. Chauvel, C., Bureau, S. & Poggi, C. (2011) Comprehensive chemical and isotopic analyses of basalt and sediment reference materials. Geostand. Geoanal. Res., 35(1), 125–143.
    [Google Scholar]
  8. Chirouze, F., Dupont‐Nivet, G., Huyghe, P., van der Beek, P., Chakraborti, T., Bernet, M. & Erens, V. (2012) Magnetostratigraphy of the Neogene Siwalik Group in the far eastern Himalaya: Kameng section, Arunachal Pradesh, India. J. Asian Earth Sci., 44, 117–135.
    [Google Scholar]
  9. Chirouze, F., Huyghe, P., van der Beek, P., Chauvel, C., Chakraborty, T., Dupont‐Nivet, G. & Bernet, M. (2013) Tectonics, exhumation, and drainage evolution of the eastern Himalaya since 13 Ma from detrital geochemistry and thermochronology, Kameng River Section, Arunachal Pradesh. Geol. Soc. Am. Bull., 125(3–4), 523–538.
    [Google Scholar]
  10. Cina, S.E., Yin, A., Grove, M., Dubey, C.S., Shukla, D.P., Lovera, O.M., Kelty, T.K., Gehrels, G.E. & Foster, D.A. (2009) Gangdese arc detritus within the eastern Himalayan Neogene foreland basin: implications for the Neogene evolution of the Yalu–Brahmaputra River system. Earth Planet. Sci. Lett., 285(1–2), 150–162.
    [Google Scholar]
  11. Clift, P.D., Hodges, K.V., Heslop, D., Hannigan, R., Van Long, H. & Calves, G. (2008) Correlation of Himalayan exhumation rates and Asian monsoon intensity. Nat. Geosci., 1(12), 875–880.
    [Google Scholar]
  12. DeCelles, P.G., Gehrels, G.E., Quade, J., Ojha, T.P., Kapp, P.A. & Upreti, B.N. (1998) Neogene foreland basin deposits, erosional unroofing, and the kinematic history of the Himalayan fold‐thrust belt, western Nepal. Geol. Soc. Am. Bull., 110(1), 2–21.
    [Google Scholar]
  13. DeCelles, P.G., Robinson, D.M., Quade, J., Ojha, T.P., Garzione, C.N., Copeland, P. & Upreti, B.N. (2001) Stratigraphy, structure, and tectonic evolution of the Himalayan fold‐thrust belt in western Nepal. Tectonics, 20(4), 487–509.
    [Google Scholar]
  14. Derry, L.A. & France‐Lanord, C. (1996) Neogene Himalayan weathering history and river87Sr86Sr: impact on the marine Sr record. Earth Planet. Sci. Lett., 142(1–2), 59–7.
    [Google Scholar]
  15. Dunoyer De Segonzac, G. (1970) The transformation of clay minerals during diagenesis and low‐grade metamorphism: a review. Sedimentology, 15 (3–4), 281–346.
    [Google Scholar]
  16. Fischer, K. (1935) Neues Verfahren zur maßanalytischen Bestimmung des Wassergehaltes von Flüssigkeiten und festen Körpern. Angew. Chem., 48(26), 394–396.
    [Google Scholar]
  17. France‐Lanord, C., Derry, L. & Michard, A. (1993) Evolution of the Himalaya since Miocene time: isotopic and sedimentological evidence from the Bengal Fan. Geol. Soc. Lond. Spec. Publi., 74(1), 603–621.
    [Google Scholar]
  18. France‐Lanord, C., Spiess, V. & Klaus, A., and the Expedition 354 Scientists (2015) Bengal Fan: Neogene and late Paleogene record of Himalayan orogeny and climate: a transect across the Middle Bengal Fan.: International Ocean Discovery Program Preliminary Report, 354.
  19. Galehouse, J.S. (1971) Point counting. In: Procedures in Sedimentary Petrology (Ed. by R.E.Carver ), pp. 385–407. Wiley, New York.
    [Google Scholar]
  20. Galy, A. & France‐Lanord, C. (1999) Weathering processes in the Ganges–Brahmaputra basin and the riverine alkalinity budget. Chem. Geol., 159(1–4), 31–60.
    [Google Scholar]
  21. Galy, A., France‐Lanord, C. & Derry, L.A. (1996) The Late Oligocene‐Early Miocene Himalayan belt Constraints deduced from isotopic compositions of Early Miocene turbidites in the Bengal Fan. Tectonophysics, 260(1–3), 109–118.
    [Google Scholar]
  22. Galy, V., France‐Lanord, C., Peucker‐Ehrenbrink, B. & Huyghe, P. (2010) Sr–Nd–Os evidence for a stable erosion regime in the Himalaya during the past 12 Myr. Earth Planet. Sci. Lett., 290(3–4), 474–480.
    [Google Scholar]
  23. Garzanti, E. & Andó, S. (2007) Heavy‐mineral concentration in modern sands: implications for provenance interpretation. In: Heavy Minerals in Use (Ed. by M.A.Mange & D.T.Wright ), pp. 517–545. Elsevier, Amsterdam, Developments in Sedimentology Series, v. 58.
    [Google Scholar]
  24. Garzanti, E., Baud, A. & Mascle, G. (1987) Sedimentary record of the northward flight of India and its collision with Eurasia (Ladakh Himalaya, India). Geodin. Acta, 1, 297–312.
    [Google Scholar]
  25. Garzanti, E., Vezzoli, G., Andò, S., France‐Lanord, C., Singh, S.K. & Foster, G. (2004) Sand petrology and focused erosion in collision orogens: the Brahmaputra case. Earth Planet. Sci. Lett., 220(1–2), 157–174.
    [Google Scholar]
  26. Garzanti, E., Andò, S. & Vezzoli, G. (2009) Grain‐size dependence of sediment composition and environmental bias in provenance studies. Earth Planet. Sci. Lett., 277, 422–432.
    [Google Scholar]
  27. Ghosh, P., Padia, J.T. & Mohindra, R. (2004) Stable isotopic studies of palaeosol sediment from Upper Siwalik of Himachal Himalaya: evidence for high monsoonal intensity during late Miocene?. Palaeogeogr. Palaeoclimatol. Palaeoecol., 206(1–2), 103–114.
    [Google Scholar]
  28. Hébert, R., Bezard, R., Guilmette, C., Dostal, J., Wang, C.S. & Liu, Z.F. (2012) The Indus‐Yarlung Zangbo ophiolites from Nanga Parbat to Namche Barwa syntaxes, southern Tibet: first synthesis of petrology, geochemistry, and geochronology with incidences on geodynamic reconstructions of Neo‐Tethys. Gondwana Res., 22(2), 377–397.
    [Google Scholar]
  29. Hillier, S. (1995) Erosion, sedimentation and sedimentary origin of clays. In: Origin and Mineralogy of Clays: Clays and the Environment (Ed. by B.Velde ), pp. 162–219. Springer Berlin Heidelberg, Berlin, Heidelberg.
    [Google Scholar]
  30. Hodges, K.V. (2000) Tectonics of the Himalaya and southern Tibet from two perspectives. Geol. Soc. Am. Bull., 112(3), 324–350.
    [Google Scholar]
  31. Holtzappel, T. (1985) Les minéraux argileux, préparation, analyse diffractométrique et détermination. Soc. Géol. Nord., 12, 1–36.
    [Google Scholar]
  32. Hu, X., Wang, J., BouDagher‐Fadel, M., Garzanti, E. & An, W. (2016) New insights into the timing of the India–Asia collision from the Paleogene Quxia and Jialazi formations of the Xigaze forearc basin, South Tibet. Gondwana Res., 32, 76–92.
    [Google Scholar]
  33. Hubert, J.F. (1962) A zircon‐tourmaline‐rutile maturity index and the interdependence of the composition of heavy minerals assemblages with the gross composition and texture of sandstones. J. Sediment. Petrol., 32, 440–450.
    [Google Scholar]
  34. Huyghe, P., Galy, A., Mugnier, J.‐L. & France‐Lanord, C. (2001) Propagation of the thrust system and erosion in the Lesser Himalaya: geochemical and sedimentological evidences. Geology, 29, 1007–1010.
    [Google Scholar]
  35. Huyghe, P., Mugnier, J.‐L., Gajurel, A.P. & Delcaillau, B. (2005) Tectonic and climatic control of the changes in sedimentary record of the Karnali River section (Siwaliks of western Nepal). The Island Arc, 14, 311–327.
    [Google Scholar]
  36. Huyghe, P., Guilbaud, R., Bernet, M., Galy, A. & Gajurel, A.P. (2011) Significance of the clay mineral distribution in fluvial sediments of the Neogene to Recent Himalayan Foreland Basin (west‐central Nepal). Basin Res., 23(3), 332–345.
    [Google Scholar]
  37. Ingersoll, R.V., Bullard, T.F., Ford, R.L., Grimm, J.P., Pickle, J.D. & Sares, S.W. (1984) The effect of grain size on detrital modes: a test of the Gazzi‐Dickinson point‐counting method. J. Sediment. Petrol., 54, 103–116.
    [Google Scholar]
  38. Kübler, B. & Goy‐Eggenberger, D. (2001) La cristallinité de l'illite revisitée: Un bilan des connaissances acquises ces trente dernières années. Clay Miner., 36, 143–157.
    [Google Scholar]
  39. Kübler, B. & Jaboyedoff, M. (2000) Illite crystallinity: Comptes Rendus de l'Académie des Sciences ‐ Series IIA ‐ Earth and Planetary. Science, 331(2), 75–89.
    [Google Scholar]
  40. Lanson, B., Beaufort, D., Berger, G., Baradat, J. & Lacharpargne, J.‐C. (1996) Illitization of diagenetic kaolinite‐to‐dickite conversion series; late‐stage diagenesis of the Lower Permian Rotliegend Sandstone reservoir, offshore of the Netherlands. J. Sediment. Res., 66, 501–518.
    [Google Scholar]
  41. Le Fort, P. (1986) Metamorphism and magmatism during the Himalayan collision. Geol. Soc. Lond. Spec. Publ., 19(1), 159–172.
    [Google Scholar]
  42. Lupker, M., France‐Lanord, C., Galy, V., Lavé, J., Gaillardet, J., Gajurel, A.P., Guilmette, C., Rahman, M., Singh, S.K. & Sinha, R. (2012) Predominant floodplain over mountain weathering of Himalayan sediments (Ganga basin). Geochim. Cosmochim. Acta, 84, 410–432.
    [Google Scholar]
  43. Lupker, M., France‐Lanord, C., Galy, V., Lavé, J. & Kudrass, H. (2013) Increasing chemical weathering in the Himalayan system since the Last Glacial Maximum. Earth Planet. Sci. Lett., 365, 243–252.
    [Google Scholar]
  44. Mange, M.A. & Maurer, H.F.W. (1992) Heavy Minerals in Colour, 147 pp. Chapman and Hall, London.
    [Google Scholar]
  45. Molnar, P., England, P. & Martinod, J. (1993) Mantle dynamics, uplift of the Tibetan Plateau, and the Indian Monsoon. Rev. Geophys., 31(4), 357–396.
    [Google Scholar]
  46. Moore, D.M. & Reynolds, R.C. (1997) X‐Ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford University Press, Oxford.
    [Google Scholar]
  47. Najman, Y., Appel, E., Boudagher‐Fadel, M., Bown, P., Carter, A., Garzanti, E., Godin, L., Han, J., Liebke, U., Oliver, G., Parrish, R. & Vezzoli, G. (2010) Timing of India‐Asia collision: geological, biostratigraphic, and palaeomagnetic constraints. J. Geophys. Res. Solid Earth, 115, B12416. doi:10.1029/2010JB007673.
    [Google Scholar]
  48. Nakayama, K. & Ulak, P.D. (1999) Evolution of fluvial style in the Siwalik Group in the foothills of the Nepal Himalaya. Sed. Geol., 125(3–4), 205–224.
    [Google Scholar]
  49. Nesbitt, H.W. & Young, G.M. (1982) Early Proterozoic climates and plate motions inferred from major element chemistry of lutite. Nature, 299, 715–717.
    [Google Scholar]
  50. Ojha, T.P., Butler, R.F., DeCelles, P.G. & Quade, J. (2009) Magnetic polarity stratigraphy of the Neogene foreland basin deposits of Nepal. Basin Res., 21(1), 61–90.
    [Google Scholar]
  51. Parker, A. (1970) An index of weathering for silicate rocks. Geol. Mag., 107, 501–504.
    [Google Scholar]
  52. Quade, J. & Cerling, T.E. (1995) Expansion of C4 grasses in the Late Miocene of Northern Pakistan: evidence from stable isotopes in paleosols. Palaeogeogr. Palaeoclimatol. Palaeoecol., 115(1–4), 91–116.
    [Google Scholar]
  53. Raymo, M.E. & Ruddiman, W.F. (1992) Tectonic forcing of late Cenozoic climate. Nature, 359(6391), 117–122.
    [Google Scholar]
  54. Robinson, D.M., DeCelles, P.G., Garzione, C.N., Pearson, O.N., Harrison, T.M. & Catlos, E.J. (2003) Kinematic model for the Main Central thrust in Nepal. Geology, 31(4), 359–362.
    [Google Scholar]
  55. Sanyal, P., Bhattacharya, S.K., Kumar, R., Ghosh, S.K. & Sangode, S.J. (2004) Mio–Pliocene monsoonal record from Himalayan foreland basin (Indian Siwalik) and its relation to vegetational change. Palaeogeogr. Palaeoclimatol. Palaeoecol., 205(1–2), 23–41.
    [Google Scholar]
  56. Sanyal, P., Sarkar, A., Bhattacharya, S.K., Kumar, R., Ghosh, S.K. & Agrawal, S. (2010) Intensification of monsoon, microclimate and asynchronous C4 appearance: isotopic evidence from the Indian Siwalik sediments. Palaeogeogr. Palaeoclimatol. Palaeoecol., 296(1–2), 165–173.
    [Google Scholar]
  57. Singh, S.K. & France‐Lanord, C. (2002) Tracing the distribution of erosion in the Brahmaputra watershed from isotopic compositions of stream sediments. Earth Planet. Sci. Lett., 202(3–4), 645–662.
    [Google Scholar]
  58. Tagami, T. & O'Sullivan, P.B. (2005) Fundamentals of fission‐track thermochronology. Rev. Mineral. Geochem., 58, 19–47.
    [Google Scholar]
  59. Thiede, R.C., Bookhagen, B., Arrowsmith, J.R., Sobel, E.R. & Strecker, M.R. (2004) Climatic control on rapid exhumation along the Southern Himalayan Front. Earth Planet. Sci. Lett., 222(3–4), 791–806.
    [Google Scholar]
  60. Vögeli, N., Najman, Y., van der Beek, P., Huyghe, P., Wynn, P., Govin, G., van der Veen, I. & Sachse, D. (2017) Lateral variations in vegetation in the Himalaya since the Miocene and implications for climate evolution. Earth Planet. Sci. Lett., 471, 1–9.
    [Google Scholar]
  61. Warr, L.N. & Rice, H.N. (1994) Interlaboratory standardization and calibration of clay mineral crystallinity and crystallite size data. J. Metamorph. Geol., 12, 141–152.
    [Google Scholar]
  62. Wen, D.‐R., Liu, D., Chung, S.‐L., Chu, M.‐F., Ji, J., Zhang, Q., Song, B., Lee, T.‐Y., Yeh, M.‐W. & Lo, C.‐H. (2008) Zircon SHRIMP U‐Pb ages of the Gangdese Batholith and implications for Neotethyan subduction in southern Tibet. Chem. Geol., 252(3–4), 191–201.
    [Google Scholar]
  63. Yin, A. & Harrison, T.M. (2000) Geologic evolution of the Himalayan‐Tibetan Orogen. Annu. Rev. Earth Planet. Sci., 28(1), 211.
    [Google Scholar]
  64. Yin, A., Dubey, C.S., Kelty, T.K., Gehrels, G.E., Chou, C.Y., Grove, M. & Lovera, O.M. (2006) Structural evolution of the Arunachal Himalaya and implications for asymmetric development of the Himalayan orogen. Curr. Sci., 90(2), 195–206.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12242
Loading
/content/journals/10.1111/bre.12242
Loading

Data & Media loading...

Supplements

Bulk petrography and heavy‐mineral data. Majore‐element geochemistry data.

Methods and results of petrography and heavy mineral analyses.

WORD

XRD diffractogram with identified peaks for sample KM13‐20. XRD diffractogram of the Yarlung up (modern) and the KM13‐30‐f (7.5 Ma) samples. Photographs of sandstone petrography of 11 samples including modern Kameng river sand.

WORD
  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error