1887
Volume 66, Issue 5
  • E-ISSN: 1365-2478

Abstract

ABSTRACT

High‐quality broadband data are required to promote the development of seismology research. Instrument response errors that affect data quality are often difficult to detect from visual waveform inspection alone. Here, we propose a method that uses ambient noise data in the period range of 5−25 s to monitor instrument performance and check data quality . Amplitude information of coda waves and travel time of surface waves extracted from cross‐correlations of ambient noise are used to assess temporal variations in the sensitivity and poles–zeros of instrument responses. The method is based on an analysis of amplitude and phase index parameters calculated from pairwise cross‐correlations of three stations, which provides multiple references for reliable error estimates. Index parameters calculated daily during a two‐year observation period are evaluated to identify stations with instrument response errors in real time. During data processing, initial instrument responses are used in place of available instrument responses to simulate instrument response errors, which are then used to verify our results. The coda waves of noise cross‐correlations help mitigate the effects of a non‐isotropic field and make the amplitude measurements quite stable. Additionally, effects of instrument response errors that experience pole–zero variations on monitoring temporal variations in crustal properties appear statistically significant of velocity perturbation and larger than the standard deviation. Monitoring seismic instrument performance helps eliminate data pollution before analysis begins.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.12621
2018-03-22
2024-04-18
Loading full text...

Full text loading...

References

  1. BensenG.D., RitzwollerM.H., BarminM.P., LevshinA.L., LinF.C., MoschettiM.P.et al. 2007. Processing seismic ambient noise data to obtain reliable broad‐band surface wave dispersion measurements. Geophysical Journal International169, 1239–1260.
    [Google Scholar]
  2. BrenguierF., CampilloM., HadziioannouC., ShapiroN.M., NadeauR.M. and LaroseE.2008a. Postseismic relaxation along the San Andreas Fault at Parkfield from continuous seismological observations. Science321(5895), 1478–1481.
    [Google Scholar]
  3. BrenguierF., ShapiroN.M., CampilloM., FerrazziniV., DuputelZ., CoutantO.et al. 2008b. Towards forecasting volcanic eruptions using seismic noise. Nature Geoscience1, 126–130.
    [Google Scholar]
  4. BrenguierF., ClarkeD., AokiY., ShapiroN.M., CampilloM. and FerrazziniV.2011. Monitoring volcanoes using seismic noise correlations. Comptes Rendus Geoscience343, 633–638.
    [Google Scholar]
  5. CampilloM. and PaulA.2003. Long‐range correlations in the diffuse seismic coda. Science299, 547–549.
    [Google Scholar]
  6. Chávez‐GarcíaF.J. and RodríguezM.2007. The correlation of microtremors: empirical limits and relations between results in frequency and time domains. Geophysical Journal International171, 657–664.
    [Google Scholar]
  7. CupillardP. and CapdevilleY.2010. On the amplitudes of surface waves obtained by noise correlation and the capability to recover the attenuation: a numerical approach. Geophysical Journal International181, 1687–1700.
    [Google Scholar]
  8. DavisP. and BergerJ.2007. Calibration of the global seismographic network using tides. Seismological Research Letters78, 454–459.
    [Google Scholar]
  9. DavisP. and BergerJ.2012. Initial impact of the global seismographic network quality initiative on metadata accuracy. Seismological Research Letters83, 697–703.
    [Google Scholar]
  10. DavisP., IshiM. and MastersG.2005. An assessment of the accuracy of GSN sensor response information. Seismological Research Letters76, 678–683.
    [Google Scholar]
  11. DurandS., MontagnerJ.P., RouxP., BrenguierF., NadeauR.M. and RicardY.2011. Passive monitoring of anisotropy change associated with the Parkfield 2004 earthquake. Geophysical Research Letters38(13), L13303.
    [Google Scholar]
  12. EkströmG., DaltonC.A. and NettlesM.2006. Observations of time‐dependent errors in long period instrument gain at global seismic stations. Seismological Research Letters77(1), 12–22.
    [Google Scholar]
  13. FromentB., CampilloM., RouxP., GouédardP., VerdelA. and WeaverR.L.2010. Estimation of the effect of nonisotropically distributed energy on the apparent arrival time in correlations. Geophysics75(5), 85–93.
    [Google Scholar]
  14. GerstoftP., SabraK.G., RouxP., KupermanW.A. and FehlerM.C.2006. Green's functions extraction and surface wave tomography from microseisms in Southern California. Geophysics71, SI23–SI31.
    [Google Scholar]
  15. GouédardP., YaoH., ErnstF. and van der HilstR.D.2012. Surface wave eikonal tomography in heterogeneous media using exploration data. Geophysical Journal International191, 781–788.
    [Google Scholar]
  16. HadziioannouC., LaroseE., CoutantO., RouxP. and CampilloM.2009. Stability of monitoring weak changes in multiply scattering media with ambient noise correlation: laboratory experiments. The Journal of the Acoustical Society of America125(6), 3688–3695.
    [Google Scholar]
  17. KimuraT., MurakamiH. and MatsumotoT.2015. Systematic monitoring of instrumentation health in high‐density broadband seismic networks. Earth, Planets and Space67(1), 1–15.
    [Google Scholar]
  18. LinF.C., RitzwollerM.H., TownendJ., BannisterS. and SavageM.K.2007. Ambient noise Rayleigh wave tomography of New Zealand. Geophysical Journal International170(2), 649–666.
    [Google Scholar]
  19. LinF.C., RitzwollerM.H. and ShenW.2011. On the reliability of attenuation measurements from ambient noise cross‐correlations. Geophysical Research Letters38, L11303.
    [Google Scholar]
  20. LobkisO.I. and WeaverR.L.2001. On the emergence of the Green's function in the correlations of a diffuse field. The Journal of the Acoustical Society of America110(6), 3011–3017.
    [Google Scholar]
  21. MeierU., ShapiroN.M. and BrenguierF.2010. Detecting seasonal variations in seismic velocities within Los Angeles basin from correlations of ambient seismic noise. Geophysical Journal International181, 985–996.
    [Google Scholar]
  22. MoschettiM.P., RitzwollerM.H. and ShapiroN.M.2007. Surface wave tomography of the western United States from ambient seismic noise: Rayleigh wave group velocity maps. Geochemistry, Geophysics, Geosystems173(1), 281–298.
    [Google Scholar]
  23. PaulA., CampilloM., MargerinL., LaroseE. and DerodeA.2005. Empirical synthesis of time‐asymmetrical Green functions from the correlation of coda waves. Journal of Geophysical Research110, B08302.
    [Google Scholar]
  24. PrietoG.A. and BerozaG.C.2008. Earthquake ground motion prediction using the ambient seismic field. Geophysical Research Letters35, L14304.
    [Google Scholar]
  25. PrietoG.A., DenolleM., LawrenceJ.F. and BerozaG.C.2011. On amplitude information carried by the ambient seismic field. Comptes Rendus Geoscience343, 600–614.
    [Google Scholar]
  26. RinglerA.T., GeeL.S., HuttC.R. and McNamaraD.E.2010. Temporal variations in global seismic station ambient noise power levels. Seismological Research Letters81, 605–613.
    [Google Scholar]
  27. RinglerA.T. and HuttC.R.2010. Self‐noise models of seismic instruments. Seismological Research Letters81, 972–983.
    [Google Scholar]
  28. RinglerA.T., HuttC.R., AsterR., BoltonH., GeeL.S. and StromT.2012. Estimating pole/zero errors in GSN‐IRIS/USGS network calibration metadata. Bulletin of the Seismological Society of America102, 836–841.
    [Google Scholar]
  29. RinglerA.T., StromT., HuttC.R. and WilsonD.2015. Uncertainty estimates in broadband seismometer sensitivities using microseisms. Journal of Seismology19, 317–327.
    [Google Scholar]
  30. RouxP., SabraK.G., KupermanW.A. and RouxA.2005. Ambient noise cross correlation in free space: theoretical approach. The Journal of the Acoustical Society of America117, 79–84.
    [Google Scholar]
  31. SabraK.G., GerstoftP., RouxP., KupermanW.A. and FehlerM.C.2005. Surface wave tomography from microseisms in southern California. Geophysical Research Letters32, L14311.
    [Google Scholar]
  32. SeatsK.J., LawrenceJ.F. and PrietoG.A.2012. Improved ambient noise correlation functions using Welch's method. Geophysical Journal International188, 513–523.
    [Google Scholar]
  33. Sens‐SchönfelderC. and WeglerU.2006. Passive image interferometry and seasonal variations of seismic velocities at Merapi Volcano, Indonesia. Geophysical Research Letters33, L21302.
    [Google Scholar]
  34. ShapiroN.M. and CampilloM.2004. Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise. Geophysical Research Letters31, L07614.
    [Google Scholar]
  35. ShapiroN.M., CampilloM., StehlyL. and RitzwollerM.H.2005. High‐resolution surface wave tomography from ambient seismic noise. Science307, 1615–1618.
    [Google Scholar]
  36. SniederR.2004. Extracting the Green's function from the correlation of coda waves: a derivation based on stationary phase. Physical Review E69, 046610.
    [Google Scholar]
  37. StehlyL., CampilloM. and ShapiroN.M.2006. A study of the seismic noise from its long‐range correlation properties. Journal of Geophysical Research111, B10306.
    [Google Scholar]
  38. StehlyL., CampilloM. and ShapiroN.M.2007. Travel time measurements from noise correlation: stability and detection of instrumental time‐shifts. Geophysical Journal International171(1), 223–230.
    [Google Scholar]
  39. StehlyL., CampilloM., FromentB. and WeaverR.L.2008. Reconstructing Green's function by correlation of the coda of the correlation (C3) of ambient seismic noise. Journal of Geophysical Research113, B11306.
    [Google Scholar]
  40. TsaiV.2011. Understanding the amplitudes of noise correlation measurements. Geophysical Research Letters116, B09311.
    [Google Scholar]
  41. WeaverR.L., FromentB. and CampilloM.2009. On the correlation of non‐isotropically distributed ballistic scalar diffuse waves. The Journal of the Acoustical Society of America126, 1817–1826.
    [Google Scholar]
  42. WeaverR.L. and LobkisO.I.2004. Diffuse fields in open systems and the emergence of the Green's function. The Journal of the Acoustical Society of America116, 2731–2734.
    [Google Scholar]
  43. WeglerU. and Sens‐SchönfelderC.2007. Fault zone monitoring with passive image interferometry. Geophysical Journal International168, 1029–1033.
    [Google Scholar]
  44. YaoH. and van der HilstR.D.2009. Analysis of ambient noise energy distribution and phase velocity bias in ambient noise tomography, with application to SE Tibet. Geophysical Journal International179, 1113–1132.
    [Google Scholar]
  45. YaoH., van der HilstR.D. and de HoopM.V.2006. Surface‐wave array tomography in SE Tibet from ambient seismic noise and two‐station analysis—I. Phase velocity maps. Geophysical Journal International166, 732–744.
    [Google Scholar]
  46. YangY., RitzwollerM.H., LinF.C., MoschettiM.P. and ShapiroN.M.2008. Structure of the crust and uppermost mantle beneath the western United States revealed by ambient noise and earthquake tomography. Journal of Geophysical Research113, B12310.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/1365-2478.12621
Loading
/content/journals/10.1111/1365-2478.12621
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): Ambient seismic noise; Broadband seismic instrument; Instrument response

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error