1887
Volume 30, Issue 5
  • E-ISSN: 1365-2117

Abstract

Abstract

We used detrital zircon U/Pb geochronology and apatite (U–Th–Sm)/He thermochronology to better constrain depositional ages and sedimentation rates for the Pliocene Productive Series in Azerbaijan. U/Pb analysis of 1,379 detrital zircon grains and (U–Th–Sm)/He analysis of 57 apatite grains—from Kirmaky Valley and Yasamal Valley onshore sections, Absheron Peninsula—yielded two distinct sub‐populations: “young” Neogene grains and “old” Mesozoic, Palaeozoic and Proterozoic/Archean grains. The large numbers of Neogene age grains (around 10% of all grain ages) provided a new absolute age constraint on the maximum depositional age of the Lower Productive Series of 4.0 Myr. These “young” Neogene zircon grains most likely originated from volcanic ash falls sourced from the Lesser Caucasus or Talesh Mountains. In this paper we propose a timescale scenario using the maximum depositional age of the Productive Series from detrital zircon grain U/Pb constraints. Potential consequences and limitations of using apatite (U–Th–Sm)/He dating method in estimating maximum depositional ages are also discussed. These new age constraints for the Lower Productive Series gave much faster sedimentation rates than previously estimated: 1.3 km/Myr in the South Caspian Basin margin outcrops and up to 3.9 km/Myr in the basin centre. The sedimentation rates are one of the highest in comparison to other sedimentary basins and coeval to global increase in sedimentation rates 2–4 Myr. The older group of detrital zircon grains constitutes the majority of grains in all sample sets (~80%). These older ages are inferred to reflect the provenance of the Productive Series sediment. This sediment is interpreted to have been derived from the Proterozoic and Archean crystalline basement rocks and Phanerozoic cover of the East European Craton, Proterozoic/Palaeozoic rocks of the Ural Mountains and Mesozoic sedimentary rocks of the Greater Caucasus. This sediment was likely supplied from northerly sourced drainage that emptied into the South Caspian Basin.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12283
2018-03-30
2024-04-20
Loading full text...

Full text loading...

References

  1. Abdullayev, N. R. (2000). Seismic stratigraphy of the Upper Pliocene and Quaternary deposits in the South Caspian Basin. Journal of Petroleum Science and Engineering, 28, 207–226. https://doi.org/10.1016/S0920-4105(00)00079-6
    [Google Scholar]
  2. Abdullayev, N. R., Kadirov, F., & Guliyev, I. S. (2015). Subsidence history and basin‐fill evolution in the South Caspian Basin from geophysical mapping, flexural backstripping, forward lithospheric modelling and gravity modelling. Geological Society, London, Special Publications, 427, SP427–5.
    [Google Scholar]
  3. Abdullayev, E., & Leroy, S. A. (2016). Provenance of clay minerals in the sediments from the Pliocene Productive Series, western South Caspian Basin. Marine and Petroleum Geology, 73, 517–527. https://doi.org/10.1016/j.marpetgeo.2016.03.002
    [Google Scholar]
  4. Abdullayev, N. R., Riley, G. W., & Bowman, A. (2012) Regional controls on lacustrine sandstone reservoirs: The Pliocene of the South Caspian Basin. In O. W.Baganz , Y.Bartov , K.Bohacs , & D.Nummedal (Ed.), Lacustrine sandstone reservoirs and hydrocarbon systems. American Association of Petroleum Geologists, Memoir, 95, 71–98.
    [Google Scholar]
  5. Abreu, V., & Nummedal, D. (2007) Miocene to quaternary sequence stratigraphy of the south and central Caspian basins. In P. O.Yilmaz & G. H.Isaksen (Eds.), Oil and gas of the greater Caspian area, Tulsa. AAPG Studies in Geology, 55, 65–86.
    [Google Scholar]
  6. Aliyev, A. G. (1949). Petrography of the Tertiary sediments of Azerbaijan, Aznefteizdat Baku (in Russian).
  7. Aliyeva, E. G., Aliyev, C. A., Huseynov, D. A., Babayev, S., & Mamedov, R. (2008). Depositional environment of the lower portion of the Productive Series sediments and their natural radioactivity. Stratigraphy and Sedimentology of Oil‐Gas Basins, 2, 91–110.
    [Google Scholar]
  8. Allen, M. B., Morton, A. C., Fanning, C., Ismail‐Zadeh, A. J., & Kronenberg, S. B. (2006). Zircon age constraints on sediment provenance in the Caspian region. Journal of the Geological Society, 163(4), 647–655. https://doi.org/10.1144/0016-764920-068
    [Google Scholar]
  9. Allen, M. B., Vincent, A. C., Alsop, I. A., Ismail‐Zade, A., & Flecker, R. (2003). Late Cenozoic deformation in the South Caspian region: Effects of the rigid basement bloc within the collision zone. Tectonophysics, 366, 223–239. https://doi.org/10.1016/S0040-1951(03)00098-2
    [Google Scholar]
  10. Amidon, W. H., Burbank, D. W., & Gehrels, G. E. (2005a). U‐Pb zircon ages as a sediment mixing tracer in the Nepal Himalaya. Earth and Planetary Science Letters, 235(1), 244–260. https://doi.org/10.1016/j.epsl.2005.03.019
    [Google Scholar]
  11. Amidon, W. H., Burbank, D. W., & Gehrels, G. E. (2005b). Construction of detrital mineral populations: Insights from mixing of U‐Pb zircon ages in Himalayan rivers. Basin Research, 17(4), 463–485. https://doi.org/10.1111/j.1365-2117.2005.00279.x
    [Google Scholar]
  12. Avdeev, B. (2011). Tectonics of the Greater Caucasus and the Arabia‐Eurasia orogen. Ph.D. Thesis. University of Michigan.
  13. Avdeev, B., & Niemi, N. A. (2011). Rapid Pliocene exhumation of the central Greater Caucasus constrained by low‐temperature thermochronology. Tectonics, 30(2).
    [Google Scholar]
  14. Azizbekov, S. A. (1972). Geology of the USSR: Azerbaijan SSR. Moscow, Russia: Nedra.
    [Google Scholar]
  15. Baturin, V. P. (1937). Paleogeography on the base of terrigenous components. Baku, Moscow (in Russian with English summary), AzONTI, Baku, 291.
  16. Bidgoli, T. S., Amir, E., Walker, D., Stockli, D. F., Andrew, J. E., & Caskey, J. (2015). Low‐temperature thermochronology of the Black and Panamint mountains, Death Valley, California: Implications for geodynamic controls on Cenozoic intraplate strain. Lithosphere, 7(4), 473–480. https://doi.org/10.1130/L406.1
    [Google Scholar]
  17. Black, L. P., Kamo, S. L., Allen, C. M., Davis, D. W., Aleinikoff, J. N., Valley, J. W., … Foudoulis, C. (2004). Improved 206 Pb/238U microprobe geochronology by the monitoring of a trace‐element‐related matrix effect; SHRIMP, ID–TIMS, ELA–ICP–MS and oxygen isotope documentation for a series of zircon standards. Chemical Geology, 205, 115–140. https://doi.org/10.1016/j.chemgeo.2004.01.003
    [Google Scholar]
  18. Blackburn, T. J., Stockli, D. F., Carlson, R. W., & Berendsen, P. (2008). (U‐Th)/He dating of kimberlites–A case study from north‐eastern Kansas. Earth and Planetary Science Letters, 275, 111–120. https://doi.org/10.1016/j.epsl.2008.08.006
    [Google Scholar]
  19. Bradley, D., Haeussler, P., O'Sullivan, P., Friedman, R., Till, A., Bradley, D., & Trop, J. (2009). Detrital zircon geochronology of Cretaceous and Paleogene strata across the south‐central Alaskan convergent margin. In P. J.Haeussler & J. P.Galloway (Eds.), Studies by the U.S. Geological Survey in Alaska, 2007. U.S. Geological Survey Professional Paper 1760‐F, 36.
    [Google Scholar]
  20. Buryakovsky, L., Chilingar, G. V., & Aminzadeh, F. (2001). Petroleum geology of the South Caspian Basin. Oxford, UK: Gulf Professional Publishing.
    [Google Scholar]
  21. Chang, L., Vasiliev, I., van Baak, C. G. C., Krijgsman, W., Dekkers, M. J., & Roberts, A. P. (2014). Identification and environmental interpretation of diagenetic and biogenic greigite in sediments: A lesson from the Messinian Black Sea. Geochemistry, Geophysics, Geosystems, 15, 3612–3627. https://doi.org/10.1002/2014gc005411
    [Google Scholar]
  22. Chang, Z., Vervoost, J. D., McClelland, W. C., & Knaack, C. (2006). U/Pb dating of zircon by LA‐ICP‐MS. Geochemistry, Geophysics, Geosystems, 7, 1–14.
    [Google Scholar]
  23. Chew, D. M., & Donelick, R. A. (2012). Combined apatite fission track and U/Pb dating by LA‐ICP‐MS and its application in apatite provenance analysis. Quantitative Mineralogy and Microanalysis of Sediments and Sedimentary Rocks: Mineralogical Association of Canada, Short Course, 42, 219–247.
    [Google Scholar]
  24. Cowgill, E., Forte, A. M., Niemi, N., Avdeev, B., Tye, A., Trexler, C., … Gogoladze, T. (2016). Relict basin closure and crustal shortening budgets during continental collision: An example from Caucasus sediment provenance. Tectonics, 35(12), 2918–2948. https://doi.org/10.1002/2016TC004295
    [Google Scholar]
  25. Devlin, W., Cogswell, J., Gaskins, G., Isaksen, G., Pitcher, D., Puls, D., … Wall, G. (1999). South Caspian Basin: Young, cool, and full of promise. GSA Today, 9(7), 1–9.
    [Google Scholar]
  26. Dickinson, W. R., & Gehrels, G. E. (2009). U/Pb ages of detrital zircons in Jurassic eolian and associated sandstones of the Colorado Plateau: Evidence for transcontinental dispersal and intraregional recycling of sediment. GSA Bulletin, 121, 408–433. https://doi.org/10.1130/B26406.1
    [Google Scholar]
  27. Dilek, Y., Imamverdiyev, N., & Atunkaynak, S. (2010). Geochemistry and tectonics of Cenozoic volcanism in the Lesser Caucasus (Azerbaijan) and the peri‐Arabian region: Collision‐induced mantle dynamics and its magmatic fingerprint. International Geology Review, 52(4–6), 536–578. https://doi.org/10.1080/00206810903360422
    [Google Scholar]
  28. Donelick, R. A., O'Sullivan, P. B., & Ketcham, R. A. (2005). Apatite fission‐track analysis. Reviews in Mineralogy and Geochemistry, 58(1), 49–94. https://doi.org/10.2138/rmg.2005.58.3
    [Google Scholar]
  29. Dunkle, S. S., Helmich, R. J., & Suslick, K. S. (2009). BiVO4 as a visible‐light photocatalyst prepared by ultrasonic spray pyrolysis. The Journal of Physical Chemistry C, 113(28), 11980–11983. https://doi.org/10.1021/jp903757x
    [Google Scholar]
  30. Farley, K. A. (2002). (U–Th)/He dating: Techniques, calibrations, and applications. Reviews in Mineralogy and Geochemistry, 47, 819–844. https://doi.org/10.2138/rmg.2002.47.18
    [Google Scholar]
  31. Farley, K. A., Wolf, R. A., & Silver, L. T. (1996). The effects of long alpha‐stopping distances on (U‐Th)/He ages. Geochimica et Cosmochimica Acta, 60(21), 4223–4229. https://doi.org/10.1016/S0016-7037(96)00193-7
    [Google Scholar]
  32. Figueiredo, J., Hoorn, C., van Der Ven, P., & Soares, E. (2009). Late Miocene onset of the Amazon River and the Amazon deep‐sea fan: Evidence from the Foz do Amazonas Basin. Geology, 37(7), 619–622. https://doi.org/10.1130/G25567A.1
    [Google Scholar]
  33. Flowers, R. M., & Farley, K. A. (2012). Apatite 4He/3He and (U‐Th)/He evidence for an ancient Grand Canyon. Science, 338(6114), 1616–1619. https://doi.org/10.1126/science.1229390
    [Google Scholar]
  34. Forte, A. M., Summer, D. Y., Cowgill, E., Stoica, M., Murtuzayev, I., Kangarli, T., … Javakhishvili, Z. (2015). Late Miocene to Pliocene Stratigraphy of the Kura Basin, a subbasin of the South Caspian Basin: Implications for the diachroneity of the stage boundaries. Basin Research, 27, 247–271. https://doi.org/10.1111/bre.12069
    [Google Scholar]
  35. Gehrels, G. E., Dickinson, W. R., Ross, G. M., Stewart, J. H., & Howell, D. G. (1995). Detrital zircon reference for Cambrian to Triassic miogeoclinal strata of western North America. Geology, 23(9), 831–834. https://doi.org/10.1130/0091-7613(1995)023<0831:DZRFCT>2.3.CO;2
    [Google Scholar]
  36. Gehrels, G., Kapp, P., Decelles, P., Pullen, A., Blakey, R., Weislogel, A., … Yin, A. (2011). Detrital zircon geochronology of pre‐Tertiary strata in the Tibetan‐Himalayan orogen. Tectonics, 30(5), 1–27.
    [Google Scholar]
  37. Gehrels, G. E., Valencia, V. A., & Ruiz, J. (2008). Enhanced precision, accuracy, efficiency, and spatial resolution of U‐Pb ages by laser ablation–multicollector–inductively coupled plasma–mass spectrometry. Geochemistry, Geophysics, Geosystems, 9(3), 1–13.
    [Google Scholar]
  38. Green, T., Abdullayev, N., Hossack, J., Riley, G., & Roberts, A. M. (2009). Sedimentation and Subsidence in the South Caspian Basin, Azerbaijan. In M.‐F.Brunet , M.Wilmsen , & J. W.Granath (Eds.), South Caspian to Central Iran Basins. Geological Society of London Special Publication, London, 312, 241–260.
    [Google Scholar]
  39. Hay, W. W., Sloan, J. L., & Wold, C. N. (1988). Mass/age distribution and composition of sediments on the ocean floor and the global rate of sediment subduction. Journal of Geophysical Research, 93, 14933–14940. https://doi.org/10.1029/JB093iB12p14933
    [Google Scholar]
  40. Hilgen, F. J., Lourens, L. J., & van Dam, J. A. (2012). The neogene period. In F.Gradstein , J.Ogg , M.Schmitz , & G.Ogg (Eds.), The geological time scale. Amsterdam, the Netherlands: Elsevier.
    [Google Scholar]
  41. Hinds, D. J., Simmons, M., Allen, M. B., & Aliyeva, E. (2007) Architecture variability in the Pereriva and Balakhany Suites of the neogene productive series, Azerbaijan: Implications for reservoir quality. In P. O.Yilmaz & G. H.Isaksen (Eds.), Oil and gas of the Greater Caspian area. American Association of Petroleum Geologists Studies in Geology, 55, 87–107.
    [Google Scholar]
  42. Hultz, C. P., Wilson, H., Donelick, R. A., & O'Sullivan, P. B. (2013). Two flysch belts having distinctly different provenance suggest no stratigraphic link between the Wrangellia composite terrane and the paleo‐Alaskan margin. Lithosphere, 5(6), 575–594. https://doi.org/10.1130/l310.1
    [Google Scholar]
  43. Jones, R. W., & Simmons, M. D. (1996). A review of stratigraphy of eastern Paratethys (Oligocene–Holocene). Bulletin of the Natural History Museum London (Geology), 52, 25–49.
    [Google Scholar]
  44. Khain, V. Y. (1975). Principle stages of tectonic magmatic development of the Caucasus and experiment in geodynamical interpretation. Geotectonics, 1, 6–13.
    [Google Scholar]
  45. Kral, J., & Gurbanov, A. G. (1996). Apatite fission track data from the great caucasus pre‐alpine basement. Chemie Der Erde, 56, 177–192.
    [Google Scholar]
  46. Krijgsman, W., Stoica, M., Vasiliev, I., & Popov, V. V. (2010). Rise and fall of the Paratethys Sea during the Messinian Salinity Crisis. Earth and Planetary Science Letters, 290, 183–191. https://doi.org/10.1016/j.epsl.2009.12.020
    [Google Scholar]
  47. Lanphere, M. A., & Baadsraard, H. (2001). Precise K‐Ar, 40Ar/39Ar, Rb‐Sr and U‐Pb mineral ages from the 27.5 Ma Fish Canyon Tuff reference standard. Chemical Geology, 175, 653–671. https://doi.org/10.1016/S0009-2541(00)00291-6
    [Google Scholar]
  48. McClusky, S., Balassanian, S., Barka, A., Demir, C., Ergintav, S., Georgiev, I., … Kastens, K. (2000). Global Positioning System constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus. Journal of Geophysical Research: Solid Earth, 105(B3), 5695–5719. https://doi.org/10.1029/1999JB900351
    [Google Scholar]
  49. Metivier, F., Gaudemer, Y., Tapponnier, P., & Klein, M. (1999). Mass accumulation rates in Asia during the Cenozoic . Geophysical Journal International, 137, 280–318.
    [Google Scholar]
  50. Molnar, P. (2004). Late Cenozoic increase in accumulation rates of terrestrial sediment: How might climate change have affected erosion rates?Annual Review of Earth and Planetary Sciences, 32, 67–89. https://doi.org/10.1146/annurev.earth.32.091003.143456
    [Google Scholar]
  51. Moore, T. E., O'Sullivan, P. B., Potter, C. J., & Donelick, R. A. (2015). Provenance and detrital zircon geochonologic evolution of lower Brookian foreland basin deposits of the western Brooks Range, Alaska, and implications for early Brookian tectonism. Geosphere, 11, 93–122. https://doi.org/10.1130/ges01043.1
    [Google Scholar]
  52. Morton, A., Allen, M., Simmons, M., Spathopoulos, F., Still, J., Hinds, D., … Kroonenberg, S. (2003). Provenance patterns in a neotectonic basin: Pliocene and quaternary sediment supply to the South Caspian. Basin Research, 15, 321–337. https://doi.org/10.1046/j.1365-2117.2003.00208.x
    [Google Scholar]
  53. Mosar, J., Kangarli, T., Bochud, M., Glasmacher, U., Rast, A., Brunet, M.‐F., & Soossn, M. (2010) Cenozoic‐recent tectonics and uplift in the greater Caucasus: A perspective from Azerbaijan. In M.Sossonm , N.Kaymakchi , R. A.Stephenson , F.Bergerat , & V.Starostenko (Eds.), Sedimentary basin tectonics from the black sea and Caucasus to the Arabian platform. Geological Society, London, Special Publications, 340, 261–280.
    [Google Scholar]
  54. Niemi, N. A., & Avdeev, B. (2010). Differential exhumation across the eastern Greater Caucasus from low‐temperature thermochronology: Implications for plate boundary reorganization and foreland basin deformation. American Geophysical Union, Fall Meeting 2010, abstract #T41D‐08.
  55. Nummedal, D., Clifton, H. E., & Williams, E. (2012) Late Miocene and early Pliocene high frequency lake level cycles in Lacustrine hydrocarbon reservoir strata: South Caspian Basin: Insights for Subseismic‐scale Lithofacies variations. In O. W.Baganz , Y.Bartov , K.Bohacs , & D.Nummedal (Eds.), Lacustrine sandstone reservoirs and hydrocarbon systems. American Association of Petroleum Geologists Memoir, 95, 99–122.
    [Google Scholar]
  56. Paces, J. B., & Miller, J. D. (1993). Precise U‐Pb ages of Duluth complex and related mafic intrusions, northeastern Minnesota: Geochronological insights to physical, petrogenetic, paleomagnetic, and tectonomagmatic processes associated with the 1.1 Ga midcontinent rift system. Journal of Geophysical Research: Solid Earth, 98(B8), 13997–14013.
    [Google Scholar]
  57. Philip, H., CisternaS, A., Givshiani, A., & Gorshkov, A. (1989). The Caucasus: An actual example of the initial stages of continental collision. Tectonophysics, 161, 1–12. https://doi.org/10.1016/0040-1951(89)90297-7
    [Google Scholar]
  58. Popov, S. V., Shcherba, I. G., Ilyina, L. B., Nevesskaya, L. A., Paramonova, N. P., Khondkarian, S. O., & Magyar, I. (2006). Late Miocene to Pliocene palaeogeography of the Paratethys and its relation to the Mediterranean. Palaeogeography, Palaeoclimatology, Palaeoecology, 238(1), 91–106. https://doi.org/10.1016/j.palaeo.2006.03.020
    [Google Scholar]
  59. Potapov, I. I. (1954). Absheron oil‐bearing province (geological characteristic). Academy of Science of Azerbaijan Republic (in Russian).
  60. Puchkov, V. N. (1997). Structure and geodynamics of the Uralian orogen. In J.‐P.Burg & M.Ford (Ed.), Orogeny through time. Geological Society, London, Special Publications, 121, 201–236.
    [Google Scholar]
  61. Pullen, A., Gehrels, G. E., Ibanez‐Mejia, J. C., & Pecha, M. (2014). What happens when n = 1000? Creating large‐n geochronological datasets with LA‐ICP‐MS for geologic investigationsJournal of Analytical Atomic Spectrometry, 29, 971–980. https://doi.org/10.1039/c4ja00024b
    [Google Scholar]
  62. Reilinger, R., MCClusky, S., Vernan, T. P., Lawrence, S., Ergintav, S., Cakmak, R., … Nadariya, M. (2006). GPS constraints on continental deformation in the Africa‐Arabia‐Eurasia continental collision zone and implications for the dynamics of plate interactions. Journal of Geophysical Research: Solid Earth, 111(B5), 1–26.
    [Google Scholar]
  63. Reiners, P. W., & Shuster, D. L. (2009). Thermochronology and landscape evolution. Physics Today, 62(9), 31–36. https://doi.org/10.1063/1.3226750
    [Google Scholar]
  64. Renne, P. R., Swisher, C. C., Deino, A. L., Karner, D. B., Owens, T. L., & Depaolo, D. J. (1998). Intercalibration of standards, absolute ages and uncertainties in 40Ar/39Ar dating. Chemical Geology, 45, 117–152. https://doi.org/10.1016/S0009-2541(97)00159-9
    [Google Scholar]
  65. Reynolds, A. D., Simmons, M. D., Bowman, M. B. J., Henton, J., Brayshaw, A. C., Ali‐Zade, A. A., … Koshkarly, R. O. (1998). Implications of outcrop geology for reservoirs in the Neogene Productive Series: Apsheron Peninsula, Azerbaijan. American Association of Petroleum Geologists Bulletin, 82, 25–49.
    [Google Scholar]
  66. Salmanov, A., Suleymanov, A., & Maharramov, B. (2015). Paleogeology of oil and gas bearing regions in Azerbaijan. Baku, Azerbaijan: Mars Print.
    [Google Scholar]
  67. Satkoski, A. M., Wilkinson, B. H., Hietpas, J., & Samson, S. D. (2013). Likeness among detrital zircon populations — An approach to the comparison of age frequency data in time and space. GSA Bulletin, 125, 1783–1799. https://doi.org/10.1130/b30888.1
    [Google Scholar]
  68. Stacey, J. S., & Kramer, J. D. (1975). Approximation of terrestrial lead isotope evolution by a two‐stage model. Earth and Planetary Science Letters, 26, 207–221. https://doi.org/10.1016/0012-821X(75)90088-6
    [Google Scholar]
  69. Steiger, R. H., & Jäger, E. (1977). Subcommission on geochronology: Convention on the use of decay constants in geo‐ and cosmochronology. Earth and Planetary Science Letters, 36(3), 359–362. https://doi.org/10.1016/0012-821X(77)90060-7
    [Google Scholar]
  70. Stoica, M., Lazar, I., Krijgsman, W., Vasiliev, I., Jipa, D. C., & Floroiu, A. (2013). Palaeoenvironmental evolution of the East Carpathian foredeep during the Late Miocene ‐ Early Pliocene (Dacian Basin; Romania). Global and Planetary Change, 103, 135–148. https://doi.org/10.1016/j.gloplacha.2012.04.004
    [Google Scholar]
  71. Sultanov, A. D. (1949). Lithology of the productive series of Azerbaijan. Baku, Azerbaijan: Publishing House of the Academy of Sciences of Azerbaijan.
    [Google Scholar]
  72. van Baak, C. G. C. (2015). Mediterranean‐Paratethys connectivity during the late Miocene to Recent. Ph.D. Thesis. University of Utrecht.
  73. van Baak, C. G. C., Stoica, M., Grothe, A., Aliyeva, E., & Krijgsman, W. (2016). Mediterranean‐Paratethys connectivity during the Messinian salinity crisis: The Pontian of Azerbaijan. Global and Planetary Change, 141, 63–81. https://doi.org/10.1016/j.gloplacha.2016.04.005
    [Google Scholar]
  74. van Baak, C. G. C., Vasiliev, I., Stoica, M., Kuiper, K. F., Forte, A. M., Aliveva, E., & Krijgsman, W. (2013). A magnetostratigraphic time frame for Plio‐Pleistocene transgressions in the South Caspian Basin, Azerbaijan. Global and Planetary Change, 103, 119–134. https://doi.org/10.1016/j.gloplacha.2012.05.004
    [Google Scholar]
  75. Vasiliev, I., Krijgsman, W., Langereis, C. G., Panaiotu, C. E., Matenco, L., & Bertotti, G. (2004). Towards an astrochronological framework for the eastern Paratethys Mio‐Pliocene sedimentary sequences of the Focsani basin (Romania). Earth and Planetary Science Letters, 227, 231–247. https://doi.org/10.1016/j.epsl.2004.09.012
    [Google Scholar]
  76. Vernant, P. H., Nilforoushan, F., Hatzfeld, D., Abbasi, M. R., Vigny, C., Masson, F., … Chery, J. (2004). Present day crustal deformation and plate kinematics in the Middle East constrained by GPS measurements in Iran and northern Oman. Geophysical Journal International, 157, 381–398. https://doi.org/10.1111/j.1365-246X.2004.02222.x
    [Google Scholar]
  77. Vincent, S. J., Carter, A., Lavrishchevv, V. A., Rice, S. P., Barabadze, T. G., & Hovius, N. (2011). The exhumation of the western Greater Caucasus: A thermochronometric study. Geological Magazine, 148(1), 1–21. https://doi.org/10.1017/S0016756810000257
    [Google Scholar]
  78. Vincent, S. J., Davies, C. E., Richards, K., & Aliyeva, E. (2010). Contrasting pliocene fluvial depositional systems within the rapidly subsiding South Caspian Basin; A case study of the Palaeo‐Volga and Palaeo‐Kura river systems in the surakhany suite, upper productive series, onshore Azerbaijan. Marine and Petroleum Geology, 27, 2079–2106. https://doi.org/10.1016/j.marpetgeo.2010.09.007
    [Google Scholar]
  79. Vincent, S. J., Morton, A. C., Carter, A., Gibbs, S., & Barabadze, T. G. (2007). Oligocene uplift of the Western Greater Caucasus; an effect of initial Arabia‐Eurasia collision. Terra Nova, 19, 160–166. https://doi.org/10.1111/j.1365-3121.2007.00731.x
    [Google Scholar]
  80. Wang, C. Y., Campbell, I. H., Stepanov, A. S., Allen, C. M., & Burtsev, I. N. (2011). Growth rate of the preserved continental crust: II. Constraints from Hf and O isotopes in detrital zircons from Greater Russian Rivers. Geochimica et Cosmochimica Acta, 75, 1308–1345. https://doi.org/10.1016/j.gca.2010.12.010
    [Google Scholar]
  81. Westaway, R. (1994). Present‐day kinematics of the Middle East and eastern Mediterranean. Journal of Geophysical Research, 99(B6), 12071–12090. https://doi.org/10.1029/94JB00335
    [Google Scholar]
  82. Zhang, P., Molnar, P., & Downs, W. (2001). Increased sedimentation rates and grainsizes 2 ± 4 Myr ago due to the influence of climate change on erosion rates. Nature, 410, 891–897.
    [Google Scholar]
  83. Zonenshain, L. P., & Le Pichon, X. (1986). Deep basins of the Black Sea and Caspian Sea as remnants of Mesozoic back‐arc basins. Tectonophysics, 123(1), 181–211.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12283
Loading
/content/journals/10.1111/bre.12283
Loading

Data & Media loading...

Supplements

 

ARCHIVE

 

ARCHIVE

 

ARCHIVE
  • Article Type: Research Article
Keyword(s): sedimentation rates; South Caspian; stratigraphy; thermochronology; timescale

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error