1887
Volume 30, Issue 5
  • E-ISSN: 1365-2117

Abstract

Abstract

Mass wasting is triggered on many continental slopes by a number of mechanisms, including seismic shaking, high sedimentation rates, the presence of weak geological units and gas hydrate dissociation. In this study, the morphology of a Late Miocene–Early Pliocene mass‐transport complex (MTC) on the Utgard High is unravelled and discussed in relation to possible trigger mechanisms. The approach used here includes 3D seismic interpretation and the analysis of variance attribute maps. The interpreted MTC is located on the crest and flanks of the Utgard High and is composed of three mass‐transport deposits with seismic characters varying from transparent and chaotic seismic facies at the base to slightly deformed layers composed of mounds and rafted blocks in the middle and chaotic to transparent reflections at the top. Lithologically, the MTC consists predominantly of claystone with high gamma ray and low density and resistivity values, demonstrating that the associated mounds represent remobilized ooze sediments. A vertical stack of six magmatic sills emplaced from 55.6 to 56.3 Ma into the Upper Cretaceous shales is interpreted at depths of 3,000–5,500 ms two‐way travel time (TWTT). In association with these magmatic sills are several hydrothermal vent complexes that interacted with the top MTC horizon, signifying that episodic and secondary fluid‐venting events might be the principal mechanism facilitating mass wasting in the study area. In addition, the remobilization of ooze sediments into mounds is hypothesized to be dependent on fluids and clayey layers. As a corollary of this work, the importance of relict and recurrent episodes of fluid flow in the Vøring Basin and their influence on the geotechnical integrity of the overburden and later mass wasting is established.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12288
2018-04-16
2024-03-28
Loading full text...

Full text loading...

References

  1. Alves, T. M., & Lourenço, S. D. N. (2010). Geomorphologic features related to gravitational collapse: Submarine landsliding to lateral spreading on a Late Miocene–Quaternary slope (SE Crete, eastern Mediterranean). Geomorphology, 123(1–2), 13–33. https://doi.org/10.1016/j.geomorph.2010.04.030
    [Google Scholar]
  2. Alves, T. M., Omosanya, K. D., & Gowling, P. (2015). Volume rendering of enigmatic high‐amplitude anomalies in southeast Brazil: A workflow to distinguish lithologic features from fluid accumulations. Interpretation, 3(2), A1–A14. https://doi.org/10.1190/INT-2014-0106.1
    [Google Scholar]
  3. Berndt, C., Bünz, S., & Mienert, J. (2003). Polygonal fault systems on the mid‐Norwegian margin: A long‐term source for fluid flow. Geological Society, London, Special Publications, 216(1), 283–290. https://doi.org/10.1144/GSL.SP.2003.216.01.18
    [Google Scholar]
  4. de Blasio, F. V., Engvik, L. E., & Elverhøi, A. (2006). Sliding of outrunner blocks from submarine landslides. Geophysical Research Letters, 33(6), L06614, https://doi.org/10.1029/2005GL025165.
    [Google Scholar]
  5. Blystad, P., Brekke, H., Faerseth, R. B., Larsen, B. T., Skogseid, J., & Toradbakken, B. (1995). Structural elements of the Norwegian continental shelf, part II, the Norwegian Sea region, Bull. 6, 45 pp. Norw. Petrol. Dir., Stavanger, Norway.
  6. Breivik, A., Faleide, J. I., Mjelde, R., Flueh, E., & Murai, Y. (2014). Magmatic development of the outer Vøring margin from seismic data. Journal of Geophysical Research: Solid Earth, 119(9), 6733–6755.
    [Google Scholar]
  7. Brekke, H. (2000). The tectonic evolution of the Norwegian Sea Continental Margin with emphasis on the Vøring and Møre Basins. Geological Society, London, Special Publications, 167(1), 327–378. https://doi.org/10.1144/GSL.SP.2000.167.01.13
    [Google Scholar]
  8. Brekke, H., Dahlgren, S., Nyland, B., & Magnus, C. (1999). The prospectivity of the Vøring and Møre basins on the Norwegian Sea continental margin. Geological Society, London, Petroleum Geology Conference series, 5(1), 261.
    [Google Scholar]
  9. Brown, A. R. (2004). Interpretation of three‐dimensional seismic data. Tulsa, OK: American Association of Petroleum Geologists (AAPG).
    [Google Scholar]
  10. Bryn, P., Berg, K., Forsberg, C. F., Solheim, A., & Kvalstad, T. J. (2005). Explaining the Storegga Slide. Marine and Petroleum Geology, 22, 11–19. https://doi.org/10.1016/j.marpetgeo.2004.12.003
    [Google Scholar]
  11. Bukovics, C., & Ziegler, P. A. (1985). Tectonic development of the Mid‐Norway continental margin. Marine and Petroleum Geology, 2(1), 2–22. https://doi.org/10.1016/0264-8172(85)90045-5
    [Google Scholar]
  12. Bull, S., Cartwright, J., & Huuse, M. (2009). A review of kinematic indicators from mass‐transport complexes using 3D seismic data. Marine and Petroleum Geology, 26(7), 1132–1151. https://doi.org/10.1016/j.marpetgeo.2008.09.011
    [Google Scholar]
  13. Cartwright, J., & Santamarina, C. (2015). Seismic characteristics of fluid escape pipes in sedimentary basins: Implications for pipe genesis. Marine and Petroleum Geology, 65(Suppl C), 126–140. https://doi.org/10.1016/j.marpetgeo.2015.03.023
    [Google Scholar]
  14. Dahlgren, T., & Lindberg, B. (2005). Buried sedimentary mounds in the Nyk High area, Mid‐Norwegian margin: Are they Miocene‐Pliocene cold‐water coral mounds?Norsk Geologisk Tidsskrift, 85, 295–304.
    [Google Scholar]
  15. Dalland, A., Worsley, D., & Ofstad, K. (1988). A lithostratigraphic scheme for the Mesozoic and Cenozoic succession offshore mid‐ and northern Norway. NPD Bulletin, 4, 65.
    [Google Scholar]
  16. Dewhurst, D. N., Cartwright, J. A., & Lonergan, L. (1999). The development of polygonal fault systems by syneresis of colloidal sediments. Marine and Petroleum Geology, 16(8), 793–810. https://doi.org/10.1016/S0264-8172(99)00035-5
    [Google Scholar]
  17. Dore, A. G., & Lundin, E. R. (1996). Cenozoic compressional structures on the NE Atlantic margin; nature, origin and potential significance for hydrocarbon exploration. Petroleum Geoscience, 2(4), 299. https://doi.org/10.1144/petgeo.2.4.299
    [Google Scholar]
  18. Doré, A. G., & Lundin, E. R. (1996). Cenozoic compressional structures on the NE Atlantic margin: Nature, origin, and potential significance for hydrocarbon exploration. Petroleum Geoscience, 2, 299–311. https://doi.org/10.1144/petgeo.2.4.299
    [Google Scholar]
  19. Doré, A. G., Lundin, E. R., Jensen, E., Birkeland, E. P., Eliassen, P. E., & Fichler, C. (1999). Principal tectonic events in the evolution of the northwest European Atlantic margin. Geological Society, London, Petroleum Geology Conference series, 5, 41–61.
    [Google Scholar]
  20. Dott, R. H. (1963). Dynamics of subaqueous gravity depositional processes. AAPG Bulletin, 47, 104–128.
    [Google Scholar]
  21. Dunlap, D. B., Wood, L. J., Weisenberger, H., & Jabour, H. (2010). Seismic geomorphology of offshore Morocco's east margin, Safi Haute Mer area. AAPG Bulletin, 94(5), 615–642. https://doi.org/10.1306/10270909055
    [Google Scholar]
  22. Eidvin, T., Goll, R. M., Grogan, P., Smelror, M., & Ulleberg, K. (1998). The Pleistocene to Middle Eocene stratigraphy and geological evolution of the western Barents Sea continental margin at well site 7316/5–1 (Bjørnøya West area). Norsk Geologisk Tidsskrift, 78, 99–123.
    [Google Scholar]
  23. Elger, J., Berndt, C., Rüpke, L., Krastel, S., Gross, F., & Geissler, W. H. (2018). Submarine slope failures due to pipe structure formation. Nature Communications, 9(1), 715. https://doi.org/10.1038/s41467-018-03176-1
    [Google Scholar]
  24. Fiduk, J. C., Brush, E. R., Anderson, L. E., Gibbs, P. B., & Rowan, M. G. (2004). Salt deformation, magmatism, and hydrocarbon prospectivity in the Espírito Santo Basin, offshore Brazil, pp. 370–392.
  25. Frey Martinez, J. (2010). 3D seismic interpretation of mass transport deposits: Implications for basin analysis and geohazard evaluation, Submarine mass movements and their consequences. Advances in Natural and Technological Hazards Research, 28, 553–568.
    [Google Scholar]
  26. Frey Martinez, J., Cartwright, J., & Hall, B. (2005). 3D seismic interpretation of slump complexes: Examples from the continental margin of Israel. Basin Research, 17(1), 83–108. https://doi.org/10.1111/j.1365-2117.2005.00255.x
    [Google Scholar]
  27. Gamboa, D., Alves, T., & Cartwright, J. (2011). Distribution and characterization of failed (mega)blocks along salt ridges, southeast Brazil: Implications for vertical fluid flow on continental margins. Journal of Geophysical Research, 116(B8).
    [Google Scholar]
  28. Gamboa, D., Alves, T., Cartwright, J., & Terrinha, P. (2010). MTD distribution on a ‘passive’ continental margin: The Espírito Santo Basin (SE Brazil) during the Palaeogene. Marine and Petroleum Geology, 27(7), 1311–1324. https://doi.org/10.1016/j.marpetgeo.2010.05.008
    [Google Scholar]
  29. Glade, T., Anderson, M., & Crozier, M. J. (2005). Landslide hazard and risk (802 pp). Chichester, UK: John Wiley & Sons. https://doi.org/10.1002/9780470012659
    [Google Scholar]
  30. Gradstein, F., & Bäckström, S. (1996). Cenozoic biostratigraphy and palaeobathymetry, northern North Sea and Haltenbanken. Norsk Geologisk Tidsskrift, 76, 3–32.
    [Google Scholar]
  31. Haflidason, H., Lien, R., Sejrup, H. P., Forsberg, C. F., & Bryn, P. (2005). The dating and morphometry of the Storegga Slide. Marine and Petroleum Geology, 22(1), 123–136. https://doi.org/10.1016/j.marpetgeo.2004.10.008
    [Google Scholar]
  32. Haflidason, H., Sejrup, H. P., Nygård, A., Mienert, J., Bryn, P., Lien, R., … Masson, D. (2004). The Storegga Slide: Architecture, geometry and slide development. Marine Geology, 213(1–4), 201–234. https://doi.org/10.1016/j.margeo.2004.10.007
    [Google Scholar]
  33. Hampton, M. A., Lee, H. J., & Locat, J. (1996). Submarine landslides. Reviews of Geophysics, 34(1), 33–59. https://doi.org/10.1029/95RG03287
    [Google Scholar]
  34. Hansen, D. M. (2004). 3D seismic characterisation of igneous sill complexes in sedimentary basins: North‐East Atlantic Margin, pp. 451.
  35. Hansen, D. M. (2006). The morphology of intrusion‐related vent structures and their implications for constraining the timing of intrusive events along the NE Atlantic margin. Journal of the Geological Society, 163(5), 789–800. https://doi.org/10.1144/0016-76492004-167
    [Google Scholar]
  36. Hansen, D. M., & Cartwright, J. (2006). The three‐dimensional geometry and growth of forced folds above saucer‐shaped igneous sills. Journal of Structural Geology, 28(8), 1520–1535. https://doi.org/10.1016/j.jsg.2006.04.004
    [Google Scholar]
  37. Henriksen, E., Bjørnseth, H. M., Hals, T. K., Heide, T., Kiryukhina, T., Kløvjan, O. S., … Sollid, K. (2011). Uplift and erosion of the greater Barents Sea: Impact on prospectivity and petroleum systems. Geological Society, London, Memoirs, 35(1), 271–281. https://doi.org/10.1144/M35.17
    [Google Scholar]
  38. Hjelstuen, B. O., Eldholm, O., & Faleide, J. I. (2007). Recurrent Pleistocene mega‐failures on the SW Barents Sea margin. Earth and Planetary Science Letters, 258(3–4), 605–618. https://doi.org/10.1016/j.epsl.2007.04.025
    [Google Scholar]
  39. Hjelstuen, B. O., Eldholm, O., & Skogseid, J. (1997). Vøring Plateau diapir fields and their structural and depositional settings. Marine Geology, 144(1), 33–57. https://doi.org/10.1016/S0025-3227(97)00085-6
    [Google Scholar]
  40. Hustoft, S., Mienert, J., Bünz, S., & Nouzé, H. (2007). High‐resolution 3D‐seismic data indicate focussed fluid migration pathways above polygonal fault systems of the mid‐Norwegian margin. Marine Geology, 245(1), 89–106. https://doi.org/10.1016/j.margeo.2007.07.004
    [Google Scholar]
  41. Laberg, J. S., Vorren, T. O., Dowdeswell, J. A., Kenyon, N. H., & Taylor, J. (2000). The Andøya Slide and the Andøya Canyon, north‐eastern Norwegian‐Greenland Sea. Marine Geology, 162(2), 259–275. https://doi.org/10.1016/S0025-3227(99)00087-0
    [Google Scholar]
  42. Laberg, J. S., Vorren, T. O., Mienert, J., Evans, D., Lindberg, B., Ottesen, D., … Henriksen, S. (2002). Late Quaternary palaeoenvironment and chronology in the Trænadjupet Slide area offshore Norway. Marine Geology, 188(1), 35–60. https://doi.org/10.1016/S0025-3227(02)00274-8
    [Google Scholar]
  43. Lawrence, G. W. M., & Cartwright, J. A. (2010). The stratigraphic and geographic distribution of giant craters and remobilised sediment mounds on the mid Norway margin, and their relation to long term fluid flow. Marine and Petroleum Geology, 27(4), 733–747. https://doi.org/10.1016/j.marpetgeo.2009.10.012
    [Google Scholar]
  44. Lindberg, B., Laberg, J. S., & Vorren, T. O. (2004). The Nyk Slide—morphology, progression, and age of a partly buried submarine slide offshore northern Norway. COSTA ‐ Continental Slope Stability, 213(1–4), 277–289.
    [Google Scholar]
  45. Locat, J., & Lee, H. (2002). Submarine landslides: Advances and challenges. Canada Geotechical Journal, 39, 193–212. https://doi.org/10.1139/t01-089
    [Google Scholar]
  46. Lundin, E., & Doré, A. G. (2002). Mid‐Cenozoic post‐breakup deformation in the ‘passive’ margins bordering the Norwegian‐Greenland Sea. Marine and Petroleum Geology, 19(1), 79–93. https://doi.org/10.1016/S0264-8172(01)00046-0
    [Google Scholar]
  47. Lundin, E. R., Doré, A. G., Rønning, K., & Kyrkjebø, R. (2013). Repeated inversion and collapse in the Late Cretaceous‐Cenozoic northern Vøring Basin, offshore Norway. Petroleum Geoscience, 19(4), 329–341. https://doi.org/10.1144/petgeo2012-022
    [Google Scholar]
  48. Marfo, G., Omosanya, O. K., Johansen, E. S., & Abrahamson, P. (2017). Seismic interpretation and characterization of anhydrite caprocks in the Tromsø Basin, SW Barents Sea. Marine Geology, 390(Suppl C), 36–50.
    [Google Scholar]
  49. Martinsen, O. J. (1994). Mass movements. In A.Maltman (Ed.), The geological deformation of sediments (pp. 127–165). London, UK: Chapman and Hall. https://doi.org/10.1007/978-94-011-0731-0
    [Google Scholar]
  50. Masson, D. G., Canals, M., Urgeles, R., Alonso, B., & Huhnerbach, V. (1998). The Canary debris flow: Source area morphology and failure mechanisms. Sedimentology, 45(2), 411–432. https://doi.org/10.1046/j.1365-3091.1998.0165f.x
    [Google Scholar]
  51. Masson, D. G., Harbitz, C. B., Wynn, R. B., Pedersen, G., & Løvholt, F. (2006). Submarine landslides: Processes, triggers and hazard prediction. Philosophical Transactions of the Royal Society of London., 364(Series A 1845), 2009–2039. https://doi.org/10.1098/rsta.2006.1810
    [Google Scholar]
  52. Masson, D. G., Harbitz, C. B., Wynn, R. B., Pedersen, G., & Løvholt, F. (2006). Submarine landslides: Processes, triggers and hazard prediction. Philosophical Transactions of the Royal Society of London., 364(1845), 2009–2039. https://doi.org/10.1098/rsta.2006.1810
    [Google Scholar]
  53. Micallef, A., Berndt, C., Masson, D. G., & Stow, D. A. V. (2008). Scale invariant characteristics of the Storegga Slide and implications for large‐scale submarine mass movements. Marine Geology, 247(1), 46–60. https://doi.org/10.1016/j.margeo.2007.08.003
    [Google Scholar]
  54. Mienert, J., Berndt, C., Laberg, J. S., & Vorren, T. O. (2003). Slope instability of continental margins. New York, NY: Springer Verlag.
    [Google Scholar]
  55. Moernaut, J., Wiemer, G., Reusch, A., Stark, N., de Batist, M., Urrutia, R., … Strasser, M. (2017). The influence of overpressure and focused fluid flow on subaquatic slope stability in a formerly glaciated basin: Lake Villarrica (South‐Central Chile). Marine Geology, 383, 35–54. https://doi.org/10.1016/j.margeo.2016.11.012
    [Google Scholar]
  56. Morgan, J., Camerlenghi, A., Silver, E., Dugan, B., Kirby, S., Shipp, C., & Suyehiro, K. (2009). Addressing geologic Hazrds through Ocean drilling. Scientific Drilling, 7, 15–30. https://doi.org/10.5194/sd-7-15-2009
    [Google Scholar]
  57. Moscardelli, L., Wood, L., & Mann, P. (2006). Mass‐transport complexes and associated processes in the offshore area of Trinidad and Venezuela. AAPG Bulletin, 90(7), 1059–1088. https://doi.org/10.1306/02210605052
    [Google Scholar]
  58. NPD
    NPD (2017). Norwegian petroleum directorate factpages. NPD Retrieved from http://factpages.npd.no/factpages/.
    [Google Scholar]
  59. Ogiesoba, O. C., & Hammes, U. (2012). Seismic interpretation of mass‐transport deposits within the upper Oligocene Frio Formation, south Texas Gulf Coast. AAPG Bulletin, 96(5), 845–868. https://doi.org/10.1306/09191110205
    [Google Scholar]
  60. Omosanya, K. D. O., & Alves, T. M. (2013a). Ramps and flats of mass‐transport deposits (MTDs) as markers of seafloor strain on the flanks of rising diapirs (Espírito Santo Basin, SE Brazil). Marine Geology, 340, 82–97. https://doi.org/10.1016/j.margeo.2013.04.013
    [Google Scholar]
  61. Omosanya, K. O., & Alves, T. M. (2013b). A 3‐dimensional seismic method to assess the provenance of Mass‐Transport Deposits (MTDs) on salt‐rich continental slopes (Espírito Santo Basin, SE Brazil). Marine and Petroleum Geology, 44, 223–239. https://doi.org/10.1016/j.marpetgeo.2013.02.006
    [Google Scholar]
  62. Omosanya, K. O., Johansen, S. E., Eruteya, O. E., & Waldmann, N. (2017). Forced folding and complex overburden deformation associated with magmatic intrusion in the Vøring Basin, offshore Norway. Tectonophysics, 706‐707(Suppl C), 14–34. https://doi.org/10.1016/j.tecto.2017.03.026
    [Google Scholar]
  63. Pickering, K., & Hiscott, R. N. (2016). Deep marine systems: Processes, deposits, environments, tectonics and sedimentation. New Jersey, NJ: Wiley‐Blackwell.
    [Google Scholar]
  64. Piper, D. J. W., Pirmez, C., Manley, P. L., Long, D., Flood, R. D., Normark, W. R., & Showers, W. (1997). Mass‐transport deposits of the Amazon Fan, Ocean Drilling Program, Scientific Results. IODP, pp. 109–146.
  65. Planke, S., Rasmussen, T., Rey, S. S., & Myklebust, R. (2005a). Seismic characteristics and distribution of volcanic intrusions and hydrothermal vent complexes in the Vøring and Møre basins. Geological Society of London, 6, 833–844.
    [Google Scholar]
  66. Planke, S., Rasmussen, T., Rey, S. S., & Myklebust, R. (2005b). Seismic characteristics and distribution of volcanic intrusions and hydrothermal vent complexes in the Vøring and Møre basins. Geological Society, London, Petroleum Geology Conference series, 6, 833–844. https://doi.org/10.1144/0060833
    [Google Scholar]
  67. Posamentier, H. W., & Kolla, V. (2003). Seismic geomorphology and stratigraphy of depositional elements in deep‐water settings. Journal of Sedimentary Research, 73(3), 367–388. https://doi.org/10.1306/111302730367
    [Google Scholar]
  68. Posamentier, H. W., & Walker, R. G. (2006). Deep‐water turbidites and submarine fans. Society for Sedimentary Geology, 84, 399–520.
    [Google Scholar]
  69. Prior, D. B., & Coleman, J. M. (1982). Active slides and flows in underconsolidated marine sediments on the slopes of the Mississippi Delta, NATO Conference Series IV. Plenum Press, pp. 225–234.
  70. Prior, D. B., & Coleman, J. M. (1984). Submarine slope instability, Slope Instability. In D.Brundsen & D. B.Prior (Eds.), Slope Instability (pp. 419–455). New York, NY: Wiley‐ Blackwell, Chichester.
    [Google Scholar]
  71. Rebesco, M., Hernández‐Molina, F. J., van Rooij, D., & Wåhlin, A. (2014). Contourites and associated sediments controlled by deep‐water circulation processes: State‐of‐the‐art and future considerations. Marine Geology, 352, 111–154. https://doi.org/10.1016/j.margeo.2014.03.011
    [Google Scholar]
  72. Richardson, S. E. J., Richard, J. D., Mark, B. A., & Grant, F. S. (2011). Structure and evolution of mass transport deposits in the South Caspian Basin, Azerbaijan. Basin Research, 23, 702–719. https://doi.org/10.1111/j.1365-2117.2011.00508.x
    [Google Scholar]
  73. Riis, F., Berg, K., Cartwright, J., Eidvin, T., & Hansch, K. (2005). Formation of large, crater‐like evacuation structures in ooze sediments in the Norwegian Sea. Possible implications for the development of the Storegga Slide. Marine and Petroleum Geology, 22(1), 257–273. https://doi.org/10.1016/j.marpetgeo.2004.10.023
    [Google Scholar]
  74. Rothwell, R. G. (2015). Deep ocean pelagic oozes, vol. 5. of Selley. Encyclopedia of geology. ( C.Richard , L.Robin McCocks & I. R.Plimer , Eds.), Oxford, UK: Elsevier Limited.
    [Google Scholar]
  75. Sheriff, R. E., & Geldart, L. P. (1995). Exploration seismology. Cambridge, UK: Cambridge University Press. https://doi.org/10.1017/CBO9781139168359
    [Google Scholar]
  76. Shipp, R. C., Nott, J. A., & Newlin, J. A. (2004). Physical characteristics and impact of mass transport complexes on deepwater jetted conductors and suction anchor piles, Annual Offshore Technology Conference. OTC.
  77. Skogseid, J., Pedersen, T., Eldholm, O., & Larsen, B. T. (1992). Tectonism and magmatism during NE Atlantic continental break‐up: the Vøring Margin. Geological Society, London, Special Publications, 68(1), 305–320. https://doi.org/10.1144/GSL.SP.1992.068.01.19
    [Google Scholar]
  78. Skogseid, J., Pedersen, T., & Larsen, V. B. (1992). Vøring Basin: Subsidence and tectonic evolution, structural and tectonic modelling and its application to petroleum geology (pp. 55–82). Amsterdam, The Netherlands: Elsevier.
    [Google Scholar]
  79. Smallwood, J. R., & Maresh, J. (2002). The properties, morphology and distribution of igneous sills:modelling, borehole data and 3D seismic from the Faroe‐Shetland area, The North Atlantic Igneous Province: Stratigraphy, tectonic, volcanic and magmatic processes (Ed. by D.W Jolley & B.R. Bell). Geol. Soc. London. Spec. Publ., pp. 271–306.
  80. Smelror, M., Dehls, J., Ebbing, J., Larsen, E., Lundin, E. R., Nordgulen, Ø., … Rise, L. (2007). Towards a 4D topographic view of the Norwegian sea margin. Global and Planetary Change, 58(1), 382–410. https://doi.org/10.1016/j.gloplacha.2006.12.005
    [Google Scholar]
  81. Solheim, A., Berg, K., Forsberg, C. F., & Bryn, P. (2005). The Storegga Slide: Repetitive large scale sliding with similar cause and development. Marine and Petroleum Geology, 22, 97–107. https://doi.org/10.1016/j.marpetgeo.2004.10.013
    [Google Scholar]
  82. Strachan, L. (2002). Slump‐initiated and controlled syndepositional sandstone remobilisation: An example from the Namurian of County Clare, Ireland. Sedimentology, 49, 25–41. https://doi.org/10.1046/j.1365-3091.2002.00430.x
    [Google Scholar]
  83. Sultan, N., Cochonat, P., Canals, M., Cattaneo, A., Dennielou, B., Haflidason, H., … Wilson, C. (2004). Triggering mechanisms of slope instability processes and sediment failures on continental margins: A geotechnical approach. Marine Geology, 213(1–4), 291–321. https://doi.org/10.1016/j.margeo.2004.10.011
    [Google Scholar]
  84. Sun, Q., Alves, T., Xie, X., He, J., Li, W., & Ni, X. (2017). Free gas accumulations in basal shear zones of mass‐transport deposits (Pearl River Mouth Basin, South China Sea): An important geohazard on continental slope basins. Marine and Petroleum Geology, 81, 17–32. https://doi.org/10.1016/j.marpetgeo.2016.12.029
    [Google Scholar]
  85. Svensen, H., Planke, S., & Corfu, F. (2010). Zircon dating ties NE Atlantic sill emplacement to initial Eocene global warming. Journal of the Geological Society, 167, 433–436. https://doi.org/10.1144/0016-76492009-125
    [Google Scholar]
  86. Tanaka, H., & Locat, J. (1999). A microstructural investigation of Osaka Bay clay: The impact of microfossils on its mechanical behaviour. Canadian Geotechnical Journal, 36(3), 493–508. https://doi.org/10.1139/t99-009
    [Google Scholar]
  87. Taylor, S. R., Almond, J., Arnott, S., Kemshell, D., & Taylor, D. (2003). The Brent Field, Block 211/29, UK North Sea. Geological Society, London, Memoirs, 20(1), 233–250. https://doi.org/10.1144/GSL.MEM.2003.020.01.20
    [Google Scholar]
  88. Thomson, K., & Hutton, D. (2004). Geometry and growth of sill complexes: Insights using 3D seismic from the North Rockall Trough. Bulletin of Volcanology, 66(4), 364–375. https://doi.org/10.1007/s00445-003-0320-z
    [Google Scholar]
  89. Urgeles, R., Canals, M., Baraza, J., Alonso, B., & Masson, D. (1997). The most recent mega landslides of the Canary Islands: El Golfo debris avalanche and Canary debris flow, west El Hierro Island. Journal of Geophysical Research, 109(B9), 20305–20323. https://doi.org/10.1029/97JB00649
    [Google Scholar]
  90. Urlaub, M., Geersen, J., Krastel, S., & Schwenk, T. (2018). Diatom ooze: Crucial for the generation of submarine mega‐slides?
  91. Varnes, D. J. (1978). Slope movement types and processes. Washington, DC: National Academy of Sciences.
    [Google Scholar]
  92. Vogt, P. (1997). Hummock fields in the Norway Basin and Eastern Iceland Plateau: Rayleigh‐Taylor instabilities?Geology, 25(6), 531–534.
    [Google Scholar]
  93. Vorren, T. O., & Laberg, J. S. (2001). Late Quaternary sedimentary processes and environment on the Norwegian–Greenland Sea continental margins. Norwegian Petroleum Society Special Publications (Vol. 10, pp. 451–456). Amsterdam, the Netherlands: Elsevier. https://doi.org/10.1016/S0928-8937(01)80027-8
    [Google Scholar]
  94. Weimer, P. (1989). Sequence stratigraphy of the Mississippi fan (Plio‐Pleistocene), Gulf of Mexico. Geo‐Marine Letters, 9(4), 185–272. https://doi.org/10.1007/BF02431072
    [Google Scholar]
  95. Wiemer, G., Dziadek, R., & Kopf, A. (2017). The enigmatic consolidation of diatomaceous sediment. Marine Geology, 385, 173–184. https://doi.org/10.1016/j.margeo.2017.01.006
    [Google Scholar]
  96. Zhang, Y., Guo, C., Yao, X., Qu, Y., & Zhou, N. (2013). Engineering geological characterization of clayey diatomaceous earth deposits encountered in highway projects in the Tengchong region, Yunnan, China. Engineering Geology, 167, 95–104. https://doi.org/10.1016/j.enggeo.2013.10.009
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12288
Loading
/content/journals/10.1111/bre.12288
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error