1887
Volume 30, Issue 5
  • E-ISSN: 1365-2117

Abstract

Abstract

Progressive integration of drainage networks during active crustal extension is observed in continental areas around the globe. This phenomenon is often explained in terms of headward erosion, controlled by the distance to an external base‐level (e.g. the coast). However, conclusive field evidence for the mechanism(s) driving integration is commonly absent as drainage integration events are generally followed by strong erosion. Based on a numerical modelling study of the actively extending central Italian Apennines, we show that overspill mechanisms (basin overfilling and lake overspill) are more likely mechanisms for driving drainage integration in extensional settings and that the balance between sediment supply vs. accommodation creation in fault‐bounded basins is of key importance. In this area drainage integration is evidenced by lake disappearance since the early Pleistocene and the transition from internal (endorheic) to external drainage, i.e. connected to the coast. Using field observations from the central Apennines, we constrain normal faulting and regional surface uplift within the surface process model CASCADE (Braun & Sambridge, 1997, , 9, 27) and demonstrate the phenomenon of drainage integration, showing how it leads to the gradual disappearance of lakes and the transition to an interconnected fluvial transport system over time. Our model results show that, in the central Apennines, the relief generated through both regional uplift and fault‐block uplift produces sufficient sediment to fill the extensional basins, enabling overspill and individual basins to eventually become fluvially connected. We discuss field observations that support our findings and throw new light upon previously published interpretations of landscape evolution in this area. We also evaluate the implications of drainage integration for topographic development, regional sediment dispersal and offshore sediment supply. Finally, we discuss the applicability of our results to other continental rifts (including those where regional uplift is absent) and the importance of drainage integration for transient landscape evolution.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12289
2018-07-11
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/bre/30/5/bre12289.html?itemId=/content/journals/10.1111/bre.12289&mimeType=html&fmt=ahah

References

  1. Artoni, A. (2013). The Pliocene‐Pleistocene stratigraphic and tectonic evolution of the Central sector of the Western Periadriatic Basin of Italy. Marine and Petroleum Geology, 42, 82–106.
    [Google Scholar]
  2. Ascione, A., Cinque, A., Miccadei, E., Villani, F., & Berti, C. (2008). The Plio‐Quaternary uplift of the Apennine chain: New data from the analysis of topography and river valleys in Central Italy. Geomorphology, 102, 105–118.
    [Google Scholar]
  3. Bartolini, C., D'Agostino, N., & Dramis, F. (2003). Topography, exhumation, and drainage network evolution of the Apennines. Episodes, 26, 212–216.
    [Google Scholar]
  4. Bishop, P. (1995). Drainage rearrangement by river capture, beheading and diversion. Progress in Physical Geography, 19, 449–473.
    [Google Scholar]
  5. Bocco, G. (1991). Gully erosion: Processes and models. Progress in Physical Geography, 15, 392–406.
    [Google Scholar]
  6. Boni, C. (2000). Karst aquifers of the Central Apennines. Hydrogéologie, 4, 49–62.
    [Google Scholar]
  7. Braun, J., & Sambridge, M. (1997). Modelling landscape evolution on geological timescales: A new method based on irregular spatial discretization. Basin Research, 9, 27–52.
    [Google Scholar]
  8. Buiter, S. J. H., Huismans, R. S., & Beaumont, C. (2008). Dissipation analysis as a guide to mode selection during crustal extension and implications for the styles of sedimentary basins. Journal of Geophysical Research, 113, B06406.
    [Google Scholar]
  9. Cavinato, G. P. (1993). Recent tectonic evolution of the Quaternary deposits of the Rieti Basin (Central Apennines, Italy): Southern part. Geologica Romana, 29, 411–434.
    [Google Scholar]
  10. Cavinato, G. P., Carusi, C., Dall'Asta, M., Miccadei, E., & Piacentini, T. (2002). Sedimentary and tectonic evolution of Plio‐Pleistocene alluvial and lacustrine deposits of Fucino Basin (central Italy). Sedimentary Geology, 148, 29–59.
    [Google Scholar]
  11. Cavinato, G. P., Cosentino, D., de Rita, D., Funiciello, R., & Parotto, M. (1994). Tectonic‐sedimentary evolution of intrapenninic basins and correlation with the volcano‐tectonic activity in Central Italy. Memorie Descrittive Della Carta Geologica d'Italia, 49, 63–76.
    [Google Scholar]
  12. Cavinato, G. P., & DeCelles, P. G. (1999). Extensional basins in tectonically bi‐modal central Apennines fold‐thrust belt, Italy: Response to corner flow above a subducting slab in retrograde motion. Geology, 27, 955–958.
    [Google Scholar]
  13. Cavinato, G. P., & Miccadei, E. (2000). Pleistocene carbonate lacustrine deposits: Sulmona Basin (Central Apennines, Italy). In E. H.Gierlowski‐Kordesch & K. R.Kelts (Eds.), Lake basins through space and time (pp. 517–526). AAPG Studies in Geology, 46.
    [Google Scholar]
  14. Centamore, E., & Nisio, S. (2003). Ejects of uplift and tilting in the Central‐Northern Apennines, Italy. Quaternary International, 101–102, 93–101.
    [Google Scholar]
  15. Connell, S. D., Hawley, J. W., & Love, D. W. (2005). Late Cenozoic drainage development in the southeastern Basin and Range of New Mexico, southeasternmost Arizona, and western Texas. In S. G.Lucas , G. S.Morgan & K.Zeigler (Eds.), New Mexico's ice ages (Vol. 28, pp. 125–150). Albuquerque, NM: New Mexico Museum of Natural History and Science.
    [Google Scholar]
  16. Cowie, P. A. (1998). Normal fault growth in three‐dimensions in continental and oceanic crust. In W.Roger Buck , P. T.Delaney , J. A.Karson & Y.Lagabrielle (Eds.), Faulting and magmatism at mid‐ocean ridges (Vol. 106, pp. 325–348). Washington, DC: American Geophysical Union Monograph.
    [Google Scholar]
  17. Cowie, P. A., Attal, M., Tucker, G. E., Whittaker, A. C., Naylor, M., Ganas, A., & Roberts, G. P. (2006). Investigating the surface process response to fault interaction and linkage using a numerical modelling approach. Basin Research, 18, 231–266.
    [Google Scholar]
  18. Cowie, P. A., & Roberts, G. P. (2001). Constraining slip rates and spacings for active normal faults. Journal of Structural Geology, 23, 1901–1915.
    [Google Scholar]
  19. Cowie, P. A., & Scholz, C. H. (1992). Displacement‐length scaling relationship for faults: Data synthesis and discussion. Journal of Structural Geology, 14, 1149–1156.
    [Google Scholar]
  20. Cowie, P. A., Scholz, C. H., Roberts, G. P., Faure Walker, J. P., & Steer, P. (2013). Viscous roots of active seismogenic faults revealed by geologic slip rate variations. Nature Geoscience, 6, 1036–1040.
    [Google Scholar]
  21. Cowie, P. A., Whittaker, A. C., Attal, M., Roberts, G. P., Tucker, G. E., & Ganas, A. (2008). New constraints on sediment‐flux‐dependent river incision: Implications for extracting tectonic signals from river profiles. Geology, 36, 535–538.
    [Google Scholar]
  22. D'Agostino, N., Chamot‐Rooke, N., Funiciello, R., Jolivet, L., & Speranza, F. (1998). The role of pre‐existing thrust faults and topography on the styles of extension in the Gran Sasso range (central Italy). Tectonophysics, 292, 229–254.
    [Google Scholar]
  23. D'Agostino, N., Jackson, J. A., Dramis, F., & Funiciello, R. (2001). Interactions between mantle upwelling, drainage evolution and active normal faulting: An example from the central Apennines (Italy). Geophysical Journal International, 147, 475–497.
    [Google Scholar]
  24. D'Agostino, N., & McKenzie, D. (1999). Convective support of long‐wavelength topography in the central Apennines (Italy). Terra Nova, 11, 234–238.
    [Google Scholar]
  25. D'Alessandro, L., Miccadei, E., & Piacentini, T. (2003). Morphostructural elements of central–eastern Abruzzi: Contributions to the study of the role of tectonics on the morphogenesis of the Apennine chain. Quaternary International, 101–102, 115–124.
    [Google Scholar]
  26. D'Alessandro, L., Miccadei, E., & Piacentini, T. (2008). Morphotectonic study of the lower Sangro River valley (Abruzzi, Central Italy). Geomorphology, 102, 145–158.
    [Google Scholar]
  27. D'Anastasio, E., de Martini, P. M., Selvaggi, G., Pantosti, D., Marchioni, A., & Maseroli, R. (2006). Short‐term vertical velocity field in the Apennines (Italy) revealed by geodetic leveling data. Tectonophysics, 418, 219–234.
    [Google Scholar]
  28. Dickinson, W. R. (2015). Integration of the Gila River drainage system through the Basin and Range province of southern Arizona and southwestern New Mexico (USA). Geomorphology, 236, 1–24.
    [Google Scholar]
  29. Douglass, J., Meek, N., Dorn, N. I., & Schmeekle, M. W. (2009). A criteria‐based methodology for determining the mechanism of transverse drainage development, with application to the southwestern United States. Geological Society of America Bulletin, 121, 586–598.
    [Google Scholar]
  30. Douglass, J., & Schmeekle, M. W. (2007). Analogue modeling of transverse drainage mechanisms. Geomorphology, 84, 22–43.
    [Google Scholar]
  31. Duffy, O. B., Brocklehurst, S. H., Gawthorpe, R. L., Leeder, M. R., & Finch, E. (2015). Controls on landscape and drainage evolution in regions of distributed normal faulting: Perachora Peninsula, Corinth Rift, Central Greece. Basin Reseach, 27, 473–494.
    [Google Scholar]
  32. Faccenna, C., Becker, T. W., Miller, M. S., Serpelloni, E., & Willett, S. D. (2014). Isostasy, dynamic topography, and the elevation of the Apennines of Italy. Earth and Planetary Science Letters, 407, 163–174.
    [Google Scholar]
  33. Faure Walker, J. P., Roberts, G. P., Cowie, P. A., Papanikolaou, I., Michetti, A. M., Sammonds, P., … Phillips, R. J. (2012). Relationship between topography and strain rate in the actively extending Italian Apennines. Earth and Planetary Science Letters, 325–326, 76–84.
    [Google Scholar]
  34. Faure Walker, J. P., Roberts, G. P., Sammonds, P. R., & Cowie, P. A. (2010). Comparison of earthquake strains over 102 and 104 year timescales: Insights into variability in the seismic cycle in the central Apennines, Italy. Journal of Geophysical Research, 115, B10418. https://doi.org/10.1029/2009JB006462
    [Google Scholar]
  35. Galli, P., Giaccio, B., & Messina, P. (2010). The 2009 central Italy earthquake seen through 0.5 Myr‐long tectonic history of the L'Aquila faults system. Quaternary Science Reviews, 29, 3768–3789.
    [Google Scholar]
  36. Garcia‐Castellanos, D., Verges, J., Gaspar‐Escribano, J., & Cloetingh, S. (2003). Interplay between tectonics, climate, and fluvial transport during the Cenozoic evolution of the Ebro basin (NE Iberia). Journal of Geophysical Research, 108, B7.
    [Google Scholar]
  37. Gawthorpe, R. L., & Leeder, M. R. (2000). Tectono‐sedimentary evolution of active extensional basins. Basin Research, 12, 195–218.
    [Google Scholar]
  38. Gliozzi, E., & Mazzini, I. (1998). Palaeoenvironmental analysis of Early Pleistocene brackish marshes in the Rieti and Tiberino intrapenninic basins (Latium and Umbria, Italy) using ostracods (Crustacea). Palaeogeography, Palaeoclimatology, Palaeoecology, 140, 325–333.
    [Google Scholar]
  39. Heidarzadeh, G., Ballato, P., Hassanzadeh, J., Ghassemi, M. R., & Strecker, M. R. (2017). Lake overspill and onset of fluvial incision in the Iranian Plateau: Insights from the Mianeh Basin. Earth and Planetary Science Letters, 469, 135–147.
    [Google Scholar]
  40. House, P. K., Pearthree, P. A., & Perkins, M. E. (2008). Stratigraphic evidence for the role of lake spillover in the inception of the lower Colorado River in southern Nevada and western Arizona. In M. C.Reheis , R.Hershler & D. M.Miller (Eds.), Late Cenozoic drainage history of the southwestern great basin and lower Colorado River region: Geological and biotic perspectives (pp. 335–353). Geological Society of America Special Paper, 439.
    [Google Scholar]
  41. Jackson, J., & Leeder, M. (1994). Drainage systems and the development of normal faults – An example from pleasant valley, Nevada. Journal of Structural Geology, 16, 1041–1059.
    [Google Scholar]
  42. Kooi, H., & Beaumont, C. (1996). Large‐scale geomorphology: Classical concepts reconciled and integrated with contemporary ideas via a surface processes model. Journal of Geophysical Research, 101, 3361–3386.
    [Google Scholar]
  43. Leeder, M. R., & Jackson, J. A. (1993). The Interaction between normal faulting and drainage in active extensional basins, with examples from the Western United States and Central Greece. Basin Research, 5, 79–102.
    [Google Scholar]
  44. Lin, J., & Stein, R. S. (2004). Stress triggering in thrust and subduction earthquakes, and stress interaction between the southern San Andreas and nearby thrust and strike‐slip faults. Journal of Geophysical Research, 109, B02303.
    [Google Scholar]
  45. Ludovisi, A., Gaino, E., Bellezza, M., & Casadei, S. (2013). Impact of climate change on the hydrology of shallow Lake Trasimeno (Umbria, Italy): History, forecasting and management. Aquatic Ecosystem Health & Management, 16(2), 190–197.
    [Google Scholar]
  46. Mancini, M., D'Anastasio, E., Barbieri, M., & de Martini, P. M. (2007). Geomorphological, paleontological and 87Sr/86Sr isotope analyses of early Pleistocene paleoshorelines to define the uplift of Central Apennines (Italy). Quaternary Research, 67, 487–501.
    [Google Scholar]
  47. Maniatis, G., Kurfeb, D., Hampel, A., & Heidbach, O. (2009). Slip acceleration on normal faults due to erosion and sedimentation – Results from a new three‐dimensional numerical model coupling tectonics and landscape evolution. Earth and Planetary Science Letters, 284, 570–582.
    [Google Scholar]
  48. Menges, C. M. (2008). Multistage late Cenozoic evolution of the Amargosa River drainage, southwestern Nevada and eastern California. In M. C.Reheis , R.Hershler & D. M.Miller (Eds.), Late Cenozoic drainage history of the southwestern Great Basin and lower Colorado River region: Geological and biotic perspectives (pp. 39–90). Geological Society of America Special Paper, 439.
    [Google Scholar]
  49. Miccadei, E., Piacentini, T., & Barberi, R. (2002). Uplift and local tectonic subsidence in the evolution of intramontane basins: The example of the Sulmona basin (central Apennines, Italy). Studi Geologici Camerti, 2002, 119–133.
    [Google Scholar]
  50. Miccadei, E., Piacentini, T., & Buccolini, M. (2017). Long‐term geomorphological evolution in the Abruzzo area, Central Italy: Twenty years of research. Geologica Carpathica, 68(1), 19–28.
    [Google Scholar]
  51. Okada, Y. (1992). Internal deformation due to shear and tensile faults in a half‐space. Bulletin of the Seismological Society of America, 82(2), 1018–1040.
    [Google Scholar]
  52. Patacca, E., Sartori, R., & Scandone, P. (1990). Tyrrhenian Basin and Apenninic Arcs: Kinematic relations since late Tortonian times. Memorie Della Societa’ Geologica Italiana, 45, 425–451.
    [Google Scholar]
  53. Piacentini, T., & Miccadei, E. (2014). The role of drainage systems and intermontane basins in the Quaternary landscape of the Central Apennines chain (Italy). Rendiconti Lincei, 25, S139–S150.
    [Google Scholar]
  54. Pizzi, A. (2003). Plio‐Quaternary uplift rates in the outer zone of the central Apennines fold‐and‐thrust belt, Italy. Quaternary International, 101–102, 229–237.
    [Google Scholar]
  55. Pucci, S., Villani, F., Civico, R., Pantosti, D., del Carlo, P., Smedile, A., … Gueli, A. (2014). Quaternary geology of the Middle Aterno Valley, 2009 L'Aquila earthquake area (Abruzzi Apennines, Italy). Journal of Maps, 11, 689–697.
    [Google Scholar]
  56. Roberts, G. P., & Michetti, A. M. (2004). Spatial and temporal variations in growth rates along active normal fault systems: An example from Lazio‐Abruzzo, central Italy. Journal of Structural Geology, 26, 339–376.
    [Google Scholar]
  57. Scisciani, V., Tavarnelli, E., & Calamita, F. (2002). The interaction of extensional and contractional deformations in the outer zones of the central Apennines, Italy. Journal of Structural Geology, 24, 1647–1658.
    [Google Scholar]
  58. Serpelloni, E., Faccenna, C., Spada, G., Dong, D., & Williams, S. D. P. (2013). Vertical GPS ground motion rates in the Euro‐Mediterranean region: New evidence of velocity gradients at different spatial scales along the Nubia‐Eurasia plate boundary. Journal of Geophysical Research: Solid Earth, 118, 1–22.
    [Google Scholar]
  59. Smith, J. (2013). Source‐to‐sink analysis of rift basin tectonics and sedimentation. PhD thesis, Manchester University, UK, p. 193.
  60. Spencer, J. E., & Pearthree, P. A. (2001). Headward erosion versus closed‐basin spillover as alternative causes of Neogene capture of the ancestral Colorado River by the Gulf of California. The Colorado River: Origin and Evolution: Grand Canyon, Arizona, Grand Canyon Association Monograph, 12, 215–219.
    [Google Scholar]
  61. Stokes, M., Mather, A. E., & Harvey, A. M. (2002). Quantification of river‐capture‐induced base‐level changes and landscape development, Sorbas Basin, SE Spain. Geological Society, London, Special Publications, 191, 23–35.
    [Google Scholar]
  62. Tarquini, S., Isola, I., Favalli, M., Mazzarini, F., Bisson, M., Pareschi, M. T., & Boschi, E. (2007). TINITALY/01: a new triangular irregular network of Italy. Annals of Geophysics, 50, 407–425.
    [Google Scholar]
  63. Toda, S., Stein, R. S., Richards‐Dinger, K., & Bozkurt, S. (2005). Forecasting the evolution of seismicity in southern California: Animations built on earthquake stress transfer. Journal of Geophysical Research, 110, B05S16.
    [Google Scholar]
  64. Twidale, C. R. (2004). River patterns and their meaning. Earth Science Reviews, 67, 159–218.
    [Google Scholar]
  65. van der Beek, P., & Bishop, P. (2003). Cenozoic river profile development in the Upper Lachlan catchment (SE Australia) as a test of quantitative fluvial incision models. Journal of Geophysical Research, 108, 2309.
    [Google Scholar]
  66. Wedmore, L. N. J., Faure Walker, J. P., Roberts, G. P., Sammonds, P. R., McCaffrey, K. J. W., & Cowie, P. A. (2017). A 667 year record of coseismic and interseismic Coulomb stress changes in central Italy reveals the role of fault interaction in controlling irregular earthquake recurrence intervals. Journal of Geophysical Research: Solid Earth, 122, 1–21.
    [Google Scholar]
  67. Wegmann, K. W., & Pazzaglia, F. J. (2009). Late Quaternary fluvial terraces of the Romagna and Marche Apennines, Italy: Climatic, lithologic, and tectonic controls on terrace genesis in an active orogeny. Quaternary Science Reviews, 28, 137–165.
    [Google Scholar]
  68. Whittaker, A. C. (2012). How do landscapes record tectonics and climate?Lithosphere, 4(2), 160–164.
    [Google Scholar]
  69. Whittaker, A. C., Attal, M., & Allen, P. A. (2010). Characterising the origin, nature and fate of sediment exported from catchments perturbed by active tectonics. Basin Research, 22, 809–828.
    [Google Scholar]
  70. Whittaker, A. C., Attal, M., Cowie, P. A., Tucker, G. E., & Roberts, G. P. (2008). Decoding temporal and spatial patterns of fault uplift using transient river long‐profiles. Geomorphology, 100, 506–526.
    [Google Scholar]
  71. Zanchetta, G., Borghini, A., Fallick, A. E., Bonadonna, F. P., & Leone, G. (2007). Late Quaternary palaeohydrology of Lake Pergusa (Sicily, southern Italy) as inferred by stable isotopes of lacustrine carbonates. Journal of Paleolimnology, 38, 227–239.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12289
Loading
/content/journals/10.1111/bre.12289
Loading

Data & Media loading...

Supplements

 

PDF

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error