1887
Volume 31, Issue 1
  • E-ISSN: 1365-2117

Abstract

Abstract

To date, quantification of individual components that contribute to shallow and deep‐seated subsidence in passive margin deltas worldwide has proven problematic. A new, regional gridded chronostratigraphic dataset for the Lower Mississippi Delta region, derived from 80,928 well reports across the northern Gulf of Mexico (GOM), has bridged the disparity between geodetic mean rates measuring total land surface subsidence across annual‐to‐decadal timescales and the deep‐seated stratigraphic subsidence rates that record isostatic response over timescales of >104 years. Through a quantitative assessment of gridded chronostratigraphic surfaces, sections, and subsidence rates extending from the Middle Pleistocene (0.58 Ma) to the Late Pliocene (3.85 Ma), we identify both temporal and spatial variability in deep‐seated subsidence across the northern GOM. Targeted deep‐seated subsidence data extracted across prior GOM Holocene sea‐level sample locations have revealed more than an order of magnitude greater rates of isostatic compensation in the Mississippi depocentre versus similar GOM sea‐level control sites in Florida and Alabama, casting doubt on efforts towards a representative Holocene sea‐level curve. Spatial variability in subsidence was also assessed locally in both the strike and dip directions to assess the contributions of growth faults. Fault throw displacement magnitude was discovered to decrease with depth, accounting for less than half of the total deep‐seated subsidence record of the Middle Pleistocene. Temporal subsidence complexities were also revealed including a direct, inverse logarithmic relationship between subsidence rate and time indicating variable subsidence component controls across different timescales. Despite the spatial and temporal complexities, this dataset serves as the first regional baseline for deep‐seated subsidence rates across the northern GOM.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12314
2018-10-02
2024-04-26
Loading full text...

Full text loading...

References

  1. Armstrong, C., Mohrig, D., Hess, T., George, T., & Straub, K. M. (2014). Influence of growth faults on coastal fluvial systems: Examples from the Late Miocene to Recent Mississippi River Delta. Sedimentary Geology, 301, 120–132. https://doi.org/10.1016/j.sedgeo.2013.06.010
    [Google Scholar]
  2. Batker, D., Mack, S., Skylar, F., Kelly, M., Freeman, A., Nuttle, W., & Costanza, R. (2012) What Louisiana stands to lose. 28–31.
  3. Blum, M. D., Carter, A. E., Zayac, T., & Goble, R. (2002). Middle Holocene sea‐level and evolution of The Gulf of Mexico Coast (USA). Journal of Coastal Research, 36, 65–80. https://doi.org/10.2112/1551-5036-36.sp1.65
    [Google Scholar]
  4. Blum, M. D., Misner, T. J., Collins, E. S., Scott, D. B., Morton, R. A., & Aslan, A. (2001). Middle Holocene sea‐level rise and highstand at +2 m, Central Texas Coast. Journal of Sedimentary Research, 71, 581–588. https://doi.org/10.1306/112100710581
    [Google Scholar]
  5. Blum, M. D., & Roberts, H. H. (2009). Drowning of the Mississippi Delta due to insufficient sediment supply and global sea‐level rise. Nature Geoscience, 2, 488–491. https://doi.org/10.1038/ngeo553
    [Google Scholar]
  6. Blum, M. D., & Roberts, H. H. (2012). The Mississippi Delta region: past, present, and future. Annual Review of Earth and Planetary Sciences, 40, 655–683. https://doi.org/10.1146/annurev-earth-042711-105248
    [Google Scholar]
  7. Blum, M. D., Sivers, A. E., Zayac, T., & Goble, R. J. (2003). Middle Holocene sea‐level and evolution of the Gulf of Mexico coast. Gulf Coast Association of Geological Societies Transactions, 53, 64–77.
    [Google Scholar]
  8. Blum, M. D., Tomkin, J. H., Purcell, A., & Lancaster, R. R. (2008). Ups and downs of the Mississippi Delta. Geology, 36, 675–678. https://doi.org/10.1130/G24728A.1
    [Google Scholar]
  9. Cazenave, A., Dieng, H.‐B., Meyssignac, B., von Schuckmann, K., Decharme, B., & Berthier, E. (2014). The rate of sea‐level rise. Nature Climate Change, 4, 358–361. https://doi.org/10.1038/nclimate2159
    [Google Scholar]
  10. Cazenave, A., & Llovel, W. (2010). Contemporary sea level rise. Annual Review of Marine Science, 2, 145–173. https://doi.org/10.1146/annurev-marine-120308-081105
    [Google Scholar]
  11. Chan, A. W., & Zoback, M. D. (2007). The role of hydrocarbon production on land subsidence and fault reactivation in the Louisiana Coastal Zone. Journal of Coastal Research, 23, 771–786. https://doi.org/10.2112/05-0553
    [Google Scholar]
  12. Church, J. A., Clark, P. U., Cazenave, A., Gregory, J. M., Jevrejeva, S., Levermann, A., … Unnikrishnan, A. S. (2013) Sea level change, in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. 1137–1216. https://doi.org/10.1017/cb09781107415315.026
  13. Cowie, P. A., & Roberts, G. P. (2001). Constraining slip rates and spacings for active normal faults. Journal of Structural Geology, 23, 1901–1915. https://doi.org/10.1016/S0191-8141(01)00036-0
    [Google Scholar]
  14. Diegel, F. A., Karlo, J. F., Schuster, D. C., Shoup, R. C., & Tauvers, P. R. (1995). Cenozoic structural evolution and tectono‐stratigraphic framework of the Northern Gulf Coast Continental Margin: Salt tectonics: A global perspective: AAPG Memoir 65, 109–151.
  15. Dixon, T. H., Amelung, F., Ferretti, A., Novali, F., Rocca, F., Dokka, R., … Whitman, D. (2006). Space geodesy: Subsidence and flooding in New Orleans. Nature, 441, 587–588. https://doi.org/10.1038/441587a
    [Google Scholar]
  16. Dokka, R. K. (2011). The role of deep processes in late 20th century subsidence of New Orleans and coastal areas of southern Louisiana and Mississippi. Journal of Geophysical Research: Solid: Earth, 116, 1–25. https://doi.org/10.1029/2010JB008008
    [Google Scholar]
  17. Dokka, R. K., Sella, G. F., & Dixon, T. H. (2006). Tectonic control of subsidence and southward displacement of southeast Louisiana with respect to stable North America. Geophysical Research Letters, 33, 1–5. https://doi.org/10.1029/2006GL027250
    [Google Scholar]
  18. Donnelly, J. P., & Giosan, L. (2008). Tempestuous highs and lows in the Gulf of Mexico. Geology, 36, 751–752. https://doi.org/10.1130/focus092008.1
    [Google Scholar]
  19. Edrington, C. H., Blum, M. D., Nunn, J. A., & Hanor, J. S. (2008). Long‐term subsidence and compaction rates: A new model for the Michoud area, south Louisiana: Transactions ‐ Gulf Coast Association of Geological Societies. 58, 261–272.
  20. Fillon, R. H. (2007). Wilcox Depositional Architecture in the Gulf of Mexico Basin: A framework for improving deep water exploration and reservoir risk, in 27th Annual GCSSEPM Foundation Bob F. Perkins Research Conference. 79–100.
  21. Fillon, R. H. (2016). Chronostratigraphic views of Gulf of Mexico tectonic and deposystem evolution in the mesozoic. In GCSSEPM 35th Annual Bob F. Perkins and Norm C. Rosen Research Conference “Mesozoic of the Gulf Rim and Beyond: New Progress in Science and Exploration of the Gulf of Mexico Basin” (p. 43). Houston, TX.
  22. Fisk, H. N., & McFarlanJr., E. (1955). Late quaternary deltaic deposits of the Mississippi River. In A.Poldervaart (Ed.), Crust of the earth. Special Papers Geological Society of America, (vol. 62, pp. 279–302).
    [Google Scholar]
  23. Gagliano, S. M. (2003). Active geological faults and land change in Southeastern Louisiana.
  24. Gagliano, S. M., Kemp, E. B.III, Wicker, K. M., Wiltenmuth, S., & Sabate, R. W. (2008). Neo‐tectonic framework of SE Louisiana and applications to Coastal Restoration: GCAGS Transactions, 53, 262–276.
  25. Galloway, W. E. (2008). Depositional evolution of the Gulf of Mexico sedimentary basin. In K. J.Hsü (Ed.), Sedimentary basins of the world, Volume 5, The sedimentary basins of the United States and Canada, Miall, A.D., ed. (pp. 505–549). The Netherlands: Elsevier.
    [Google Scholar]
  26. Galloway, W. E., Ganey‐Curry, P., & Whiteaker, T. L. (2009). Regional controls from temporal and spatial distribution of continental slope and abyssal plain reservoir systems of the Gulf of Mexico Basin. AAPG Search and Discovery, 50226, 1–26.
    [Google Scholar]
  27. Galloway, W. E., Whiteaker, T. L., & Ganey‐Curry, P. (2011). History of Cenozoic North American drainage basin evolution, sediment yield, and accumulation in the Gulf of Mexico basin. Geosphere, 7, 938–973. https://doi.org/10.1130/GES00647.1
    [Google Scholar]
  28. González, J. L., & Tornqvist, T. E. (2006). Coastal Louisiana in crisis: Subsidence or sea level rise?Eos, Transactions American Geophysical Union, 87, 493. https://doi.org/10.1029/2006EO450001
    [Google Scholar]
  29. Gradstein, F. M., Ogg, J. G., Schmitz, M. D., & Ogg, G. M. (2012). The geologic time scale. Boston, MA: Elsevier.
    [Google Scholar]
  30. Ivins, E. R., Dokka, R. K., & Blom, R. G. (2007). Post‐glacial sediment load and subsidence in coastal Louisiana. Geophysical Research Letters, 34, 1–5. https://doi.org/10.1029/2007GL030003
    [Google Scholar]
  31. Jankowski, K. L., Törnqvist, T. E., & Fernandes, A. M. (2017). Vulnerability of Louisiana's coastal wetlands to present‐day rates of relative sea‐level rise. Nature Communications, 8, 14792. https://doi.org/10.1038/ncomms14792
    [Google Scholar]
  32. Jones, C. E., An, K., Blom, R. G., Kent, J. D., Ivins, E. R., & Bekaert, D. (2016). Anthropogenic and geologic influences on subsidence in the vicinity of New Orleans, Louisiana. Journal of Geophysical Research, 121, 767–787. https://doi.org/10.1002/2015JB012352
    [Google Scholar]
  33. Karegar, M. A., Dixon, T. H., & Malservisi, R. (2015). A three‐dimensional surface velocity field for the Mississippi Delta : Implications for coastal restoration and flood potential. Geology, 43, 519–522. https://doi.org/10.1130/G36598.1
    [Google Scholar]
  34. Kuecher, G. J., Roberts, H. H., Thompson, M. D., & Matthews, I. (2001). Evidence for active growth faulting in the terrebonne Delta plain, South Louisiana: Implications for wetland loss and the vertical migration of petroleum. Environmental Geosciences, 8, 77–94. https://doi.org/10.1046/j.1526-0984.2001.82001.x
    [Google Scholar]
  35. Kulp, M. (2000). Holocene stratigraphy, history, and subsidence of the Mississippi River Delta region (p. 283). North central Gulf of Mexico: University of Kentucky.
    [Google Scholar]
  36. Love, R., Milne, G. A., Tarasov, L., Engelhart, S. E., & Hijma, M. P. (2016). The contribution of glacial isostatic adjustment to projections of sea‐level change along the Atlantic and Gulf coasts of North America. Earth's Future, 4, 440–464. https://doi.org/10.1002/2016EF000363
    [Google Scholar]
  37. Martin, J., Cantelli, A., Paola, C., Blum, M., & Wolinsky, M. (2011). Quantitative modeling of the evolution and geometry of Incised Valleys. Journal of Sedimentary Research, 81, 64–79. https://doi.org/10.2110/jsr.2011.5
    [Google Scholar]
  38. McBride, B. C., Rowan, M. G., & Weimer, P. (1998). The evolution of allochthonous salt systems, northern Green Canyon and Ewing Bank (offshore Louisiana), northern Gulf of Mexico. AAPG Bulletin, 82, 1013–1036. https://doi.org/10.1306/1D9BC9FD-172D-11D7-8645000102C1865D
    [Google Scholar]
  39. McCulloh, R. P., & Heinrich, P. V. (2013). Surface faults of the south Louisiana growth‐fault province. Geological Society of America Special Paper, 493, 37–49. https://doi.org/10.1130/2012.2493(03)
    [Google Scholar]
  40. McFarlan, E., & LeRoy, D. O. (1988). Subsurface geology of the Late Tertiary and Quaternary deposits, coastal Louisiana and the adjacent continental shelf. Gulf Coast Association of Geological Societies Transactions, 38, 421–433.
    [Google Scholar]
  41. McGranahan, G., Balk, D., & Anderson, B. (2007). The rising risks of climate change and human settlements in low elevation coastal zones. Environment and Urbanization, 19, 17–37. https://doi.org/10.1177/0956247807076960
    [Google Scholar]
  42. Meckel, T. A. (2008). An attempt to reconcile subsidence rates determined from various techniques in southern Louisiana. Quaternary Science Reviews, 27, 1517–1522. https://doi.org/10.1016/j.quascirev.2008.04.013
    [Google Scholar]
  43. Meckel, T. A., ten Brink, U. S., & Williams, S. J. (2006). Current subsidence rates due to compaction of Holocene sediments in southern Louisiana. Geophysical Research Letters, 33, 1–5. https://doi.org/10.1029/2006GL026300
    [Google Scholar]
  44. Miller, K. G., Kominz, M. A., Browning, J. V., Wright, J. D., Mountain, G. S., Katz, M. E., … Pekar, S. F. (2005). The Phanerozoic record of global sea‐level change. Science, 310, 1293–1298. https://doi.org/10.1126/science.1116412
    [Google Scholar]
  45. Miller, K. G., Mountain, G. S., Wright, J. D., & Browning, J. V. (2011). A 180 million year record of sea level and ice volume variations. Oceanography, 24, 40–53. https://doi.org/10.5670/oceanog.2011.26
    [Google Scholar]
  46. Milliken, K. T., Anderson, J. B., & Rodriguez, A. B. (2008). A new composite Holocene sea‐level curve for the northern Gulf of Mexico. Response of Upper Gulf Coast Estuaries to Holocene Climate Change and Sea‐Level Rise, 443, 1–11. https://doi.org/10.1130/2008.2443(01)
    [Google Scholar]
  47. Morton, R. A., & Bernier, J. C. (2010). Recent subsidence‐rate reductions in the Missississippi and their geological implications. Journal of Coastal Research, 26, 555–561. https://doi.org/10.2112/JCOASTRES-D-09-00014R1.1
    [Google Scholar]
  48. Morton, R. A., Paine, J. G., & Blum, M. D. (2000). Responses of stable Bay‐Margin and Barrier‐Island systems to Holocene sea‐Level highstands, Western Gulf of Mexico. Journal of Sedimentary Research, 70, 478–490. https://doi.org/10.1306/2DC40921-0E47-11D7-8643000102C1865D
    [Google Scholar]
  49. Murray, G. E. (1961). Geology of the Atlantic and Gulf Coastal Provinces of North America (p. 692). New York, NY: Harper.
    [Google Scholar]
  50. Nienhuis, J. H., Törnqvist, T. E., Jankowski, K. L., Fernandes, A. M., & Keogh, M. E. (2017). A new subsidence map for coastal Louisiana. GSA Today, 27, https://doi.org/10.1130/G36598.1
    [Google Scholar]
  51. Ogg, J. G., Ogg, G. M., & Gradstein, F. M. (2016). A concise geologic time scale. Boston, MA: Elsevier.
    [Google Scholar]
  52. Peel, F., Travis, C., & Hossack, J. (1995). Genetic structural provinces and salt tectonics of the Cenozoic offshore US Gulf of Mexico; a preliminary analysis: Salt Tectonics:AAPG Memoir 65, 65, 153–175.
  53. Penland, S., & Ramsey, K. E. (1990). Relative sea‐level rise in Louisiana and the Gulf of Mexico : 1908–1988. Journal of Coastal Research, 6, 323–342.
    [Google Scholar]
  54. Pitman, W. C.III, & Golovchenko, X. (1983). The effect of sea‐level change on the shelf edge and slope of passive margins. Society of Economic Paleontologists and Mineralogists Special Publication, 33, 41–58.
    [Google Scholar]
  55. Roberts, H. H., Bailey, A., & Kuecher, G. J. (1994). Subsidence in the Mississippi River Delta‐important influences of valley filling by cyclic deposition, primary consolidation phenomena, and early diagenesis. Transactions of the Gulf Coast Association of Geological Societies, 44, 619–629.
    [Google Scholar]
  56. Roberts, H. H., Morton, R. A., & Freeman, A. (2008) A high‐resolution seismic assessment of faulting in the Louisiana Coastal Plain. 733–745.
  57. Rodriguez, A. B., Anderson, J. B., Siringan, F. P., & Taviani, M. (2004). Holocene evolution of the east Texas coast and inner continental shelf: Along‐strike variability in coastal retreat rates. Journal of Sedimentary Research, 74, 405–421.
    [Google Scholar]
  58. Rodriguez, A. B., Anderson, J. B., & Simms, A. R. (2005). Terrace inundation as an autocyclic mechanism for parasequence formation: Galveston Estuary, Texas, U.S.A. Journal of Sedimentary Research, 75(4), 608–620. https://doi.org/10.2110/jsr.2005.050
    [Google Scholar]
  59. Rodriguez, A. B., & Meyer, C. T. (2006). Sea‐level variation during the Holocene deduced from the morphologic and stratigraphic evolution of Morgan Peninsula, Alabama, U.S.A. Journal of Sedimentary Research, 76, 257–269. https://doi.org/10.2110/jsr.2006.018
    [Google Scholar]
  60. Sadler, P. M. (1981). Sediment accumulation rates and the completeness of stratigraphic sections. Journal of Geology, 89, 569–584. https://doi.org/10.1086/628623
    [Google Scholar]
  61. Sadler, P. M. (1999). The influence of hiatuses on sediment accumulation rates. In P.Bruns & H. C.Haas (Eds.), GeoResearch forum: On the determination of sediment accumulation rates (vol. 5, pp. 15–40). Switzerland: Trans Tech Publications.
    [Google Scholar]
  62. Schumer, R., & Jerolmack, D. J. (2009). Real and apparent changes in sediment deposition rates through time. Journal of Geophysical Research: Solid: Earth, 114, 1–12. https://doi.org/10.1029/2009JF001266
    [Google Scholar]
  63. Shen, Z., Dawers, N. H., Törnqvist, T. E., Gasparini, N. M., Hijma, M. P., & Mauz, B. (2017). Mechanisms of Late Quaternary fault throw‐rate variability along the north central Gulf of Mexico coast: Implications for coastal subsidence. Basin Research, 29, 557–570. https://doi.org/10.1111/bre.12184
    [Google Scholar]
  64. Shen, Z., Torrnqvist, T. E., Autin, W. J., Mateo, Z. R. P., Straub, K. M., & Mauz, B. (2012). Rapid and widespread response of the Lower Mississippi River to eustatic forcing during the last glacial‐interglacial cycle. Bulletin of the Geological Society of America, 124, 690–704. https://doi.org/10.1130/B30449.1
    [Google Scholar]
  65. Shinkle, K., & Dokka, R. (2004) Rates of vertical displacement at benchmarks in the lower Mississippi valley and the Northern Gulf Coast, in NOAA Technical Report NGS 50, 50, 135.
  66. Simms, A. R., Lambeck, K., Purcell, A., Anderson, J. B., & Rodriguez, A. B. (2007). Sea‐level history of the Gulf of Mexico since the Last Glacial Maximum with implications for the melting of the Laurentide Ice Sheet. Quaternary Science Reviews, 26, 920–940. https://doi.org/10.1016/j.quascirev.2007.01.001
    [Google Scholar]
  67. Spurr, J. E. (1897). The measurement of faults. Journal of Geology, 5, 723–729. https://doi.org/10.1086/607929
    [Google Scholar]
  68. Stephens, B. P. (2010) Basement controls on subsurface geologic patterns and near‐surface geology across the Northern Gulf of Mexico: A Deeper Perspective on Coastal Louisiana: Search and Discovery. 30129, 1–12.
  69. Straub, K. M., Paola, C., Mohrig, D., Wolinsky, M. A., & George, T. (2009). Compensational stacking of channelized sedimentary deposits. Journal of Sedimentary Research, 79, 673–688. https://doi.org/10.2110/jsr.2009.070
    [Google Scholar]
  70. Syvitski, J. P. M. (2008). Deltas at risk. Sustainability Science, 3, 23–32. https://doi.org/10.1007/s11625-008-0043-3
    [Google Scholar]
  71. Syvitski, J. P. M., & Milliman, J. D. (2007). Geology. Geography, and humans battle for dominance over the delivery of fluvial sediment to the coastal Ocean. Journal of Geology, 115, 1–19. https://doi.org/10.1086/509246
    [Google Scholar]
  72. Syvitski, J. P. M., & Saito, Y. (2007). Morphodynamics of deltas under the influence of humans. Global and Planetary Change, 57, 261–282. https://doi.org/10.1016/j.gloplacha.2006.12.001
    [Google Scholar]
  73. Törnqvist, T. E., Bick, S. J., van der Borg, K., & de Jong, A. F. M. (2006). How stable is the Mississippi Delta?Geology, 34, 697–700. https://doi.org/10.1130/G22624.1
    [Google Scholar]
  74. Törnqvist, T. E., González, J. L., Newsom, L. A., van der Borg, K., de Jong, A. F. M., & Kurnik, C. W. (2004). Deciphering Holocene sea‐level history on the U.S. Gulf Coast: A high‐resolution record from the Mississippi Delta. Bulletin of the Geological Society of America, 116, 1026–1039. https://doi.org/10.1130/B2525478.1
    [Google Scholar]
  75. Törnqvist, T. E., Wallace, D. J., Storms, J. E. A., Wallinga, J., van Dam, R. L., Blaauw, M., … Snijders, E. M. A. (2008). Mississippi Delta subsidence primarily caused by compaction of Holocene strata. Nature Geoscience, 1, 173–176. https://doi.org/10.1038/ngeo129
    [Google Scholar]
  76. Watts, A. B., Zhong, S. J., & Hunter, J. (2013). The behavior of the Lithosphere on Seismic to Geologic Timescales. Annual Review of Earth and Planetary Sciences, 41, 443–468. https://doi.org/10.1146/annurev-earth-042711-105457
    [Google Scholar]
  77. Wolstencroft, M., Shen, Z., Törnqvist, T. E., Milne, G. A., & Kulp, M. (2014). Understanding subsidence in the Mississippi Delta region due to sediment, ice, and ocean loading: Insights from geophysical modeling. Journal of Geophysical Research: Solid: Earth, 119, 3838–3856. https://doi.org/10.1002/2013JB010928
    [Google Scholar]
  78. Woodbury, H. O., Murray, I. B.Jr, Pickford, P. J., & Akers, W. H. (1973). Pliocene and Pleistocene depocenters, outer continental shelf, Louisiana and Texas. American Association of Petroleum Geologists, 57, 2428–2439.
    [Google Scholar]
  79. Yu, S. Y., Törnqvist, T. E., & Hu, P. (2012). Quantifying Holocene lithospheric subsidence rates underneath the Mississippi Delta. Earth and Planetary Science Letters, 331–332, 21–30. https://doi.org/10.1016/j.epsl.2012.02.021
    [Google Scholar]
  80. Yuill, B., Lavoie, D., & Reed, D. J. (2009). Understanding subsidence process in coastal Louisiana. Journal of Coastal Research, 54, 23–36. https://doi.org/10.2112/SI54-012.1
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12314
Loading
/content/journals/10.1111/bre.12314
Loading

Data & Media loading...

Supplements

 

PDF

 

WORD
  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error