1887
Volume 67, Issue 2
  • E-ISSN: 1365-2478

Abstract

ABSTRACT

The seismic K‐Horizon is the key to gaining understanding on the deep supercritical geothermal rocks in Southern Tuscany. The K‐Horizon is hosted in metamorphic rocks, which cause strong seismic wavefield scattering resulting in a poor signal‐to‐noise ratio. Our study aims to reveal high‐resolution seismic images of the K‐Horizon below a geothermal field in Southern Tuscany, using an advanced three‐dimensional seismic depth imaging approach. The key seismic pre‐processing steps in the time domain include muting a large amount of persistent noise based on the statistical analysis of the seismic amplitudes, and tomostatics technique to correct for static effects. We carried out seismic depth imaging using Kirchhoff Pre‐Stack Depth Migration and Fresnel Volume Migration techniques. Each migration technique was tested with constant and heterogeneous three‐dimensional velocity models. Due to the difficulties in determining emergent angles for this low signal‐to‐noise ratio data set, the migration results with the heterogeneous three‐dimensional velocity model show less coherent reflections compared to the migration results using the constant velocity model. Both velocity models however lead to relatively the same structure and depth of the K‐Horizon, indicating the similarity of the average velocities along the wave propagation paths in both velocity models. With both velocity models Fresnel Volume Migration yields the K‐Horizon with better reflection coherency and higher signal‐to‐noise ratio than standard Kirchhoff Pre‐Stack Depth Migration. Nevertheless, both migration techniques have been able to reveal the K‐Horizon with relatively high resolution and provide a reliable basis for geothermal rock characterization as well as steering of the first geothermal well penetrating the K‐Horizon.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.12723
2019-01-09
2024-04-23
Loading full text...

Full text loading...

References

  1. AccainoF., TinivellaU., RossiG. and NicolichR.2005. Imaging of CROP‐18 deep seismic crustal data. Bollettino della Società Geologica Italiana, Volume Speciale3, 195–204.
    [Google Scholar]
  2. AleardiM. and MazzottiA.2014. A feasibility study on the expected seismic ava signatures of deep fractured geothermal reservoirs in an intrusive basement. Journal of Geophysics and Engineering11, 065008.
    [Google Scholar]
  3. AleardiM., MazzottiA., TognarelliA., CiuffiS. and CasiniM.2015. Seismic and well log characterization of fractures for geothermal exploration in hard rocks. Geophysical Journal International203, 270–283.
    [Google Scholar]
  4. AriasA., DiniI., CasiniM., FiordelisiA., PerticoneI. and Dell'AiutoP.2010. Geoscientific feature update of the Larderello–Travale geothermal system (Italy) for a regional numerical modeling. World Geothermal Congress Proceedings, World Geothermal Congress.
  5. BatiniF., BertiniG., GianelliG., PandeliE. and PuxedduM.1983. Deep structure of the Larderello field: contribution from recent geophysical and geological data. Memorie della Società Geologica Italiana25, 219–235.
    [Google Scholar]
  6. BatiniF., DupratA. and NicolichR.1985. Contribution of seismic reflection to the study of geothermal reservoirs in Tuscany (Italy). Geothermal Resources Council, Transactions9, 245–252.
    [Google Scholar]
  7. BellaniS. and GherardiF.2013. Thermal overview of an area NW of the Larderello geothermal field, Italy. Geothermal Resources Council, Transactions37, 231–235.
    [Google Scholar]
  8. BerkhoutA., Van Der SchootA. and RomijnR.1990. Seismic imaging by shot record migration: a case study. International Journal of Imaging Systems and Technology2, 13–24.
    [Google Scholar]
  9. BertiniG., CasiniM., GianelliG. and PandeliE.2006. Geological structure of a long‐living geothermal system, Larderello, Italy. Terra Nova18, 163–169.
    [Google Scholar]
  10. BoccalettiM., ElterP. and GuazzoneG.1971. Plate tectonic models for the development of the Western Alps and Northern Apennines. Nature234, 108–111.
    [Google Scholar]
  11. BrogiA., LazzarottoA., LiottaD. and RanalliG.2003. Extensional shear zones as imaged by reflection seismic lines: the Larderello geothermal field (central Italy). Tectonophysics363, 127–139.
    [Google Scholar]
  12. BurliniL. and TancrediS.1998. Experimental study of the seismic properties of Isola d'Elba metamorphic basement (Tuscany, Italy). Memorie della Società Geologica Italiana52, 101–110.
    [Google Scholar]
  13. BuskeS.1999. Three‐dimensional pre‐stack Kirchhoff migration of deep seismic reflection data. Geophysical Journal International137, 243–260.
    [Google Scholar]
  14. BuskeS., GutjahrS. and SickC.2009. Fresnel volume migration of single‐component seismic data. Geophysics74, WCA47–WCA55.
    [Google Scholar]
  15. CameliG.M., DiniI. and LiottaD.1993. Upper crustal structure of the Larderello geothermal field as a feature of post‐collisional extensional tectonics (Southern Tuscany, Italy). Tectonophysics224, 413–423.
    [Google Scholar]
  16. CameliG.M., DiniI. and LiottaD.1998. Brittle/ductile boundary from seismic reflection lines of Southern Tuscany (Northern Apennines, Italy). Memorie della Società Geologica Italiana52, 153–162.
    [Google Scholar]
  17. CarmignaniL., DecandiaF.A., FantozziP.L., LazzarottoA., LiottaD. and MeccheriM.1994. Tertiary extensional tectonics in Tuscany (Northern Apennines, Italy). Tectonophysics238, 295–310, 313–315.
    [Google Scholar]
  18. CasiniM., CiuffiS., FiordelisiA., MazzottiA. and StucchiE.2010. Results of a 3D seismic survey at the travale (italy) test site. Geothermics39, 4–12.
    [Google Scholar]
  19. Červenỳ, V. andSoares J.E.P.1992. Fresnel volume ray tracing. Geophysics57, 902–915.
    [Google Scholar]
  20. ClaerboutJ.F.1985. Imaging the Earth's Interior. Blackwell Scientific Publications, Oxford.
    [Google Scholar]
  21. DiniA., GianelliG., PuxedduM. and RuggieriG.2005. Origin and evolution of Pliocene–Pleistocene granites from the Larderello geothermal field (Tuscan Magmatic Province, Italy). Lithos81, 1–31.
    [Google Scholar]
  22. ElterF.M. and PandeliE.1990. Alpine and Hercynian orogenic phases in the basement rocks of the Northern Apennines (Larderello geothermal field, Southern Tuscany, Italy). Eclogae Geologicae Helvetiae83, 241–264.
    [Google Scholar]
  23. FoumierR.O.1991. The transition from hydrostatic to greater than hydrostatic fluid pressure in presently active continental hydrothermal systems in crystalline rock. Geophysical Research Letters18, 955–958.
    [Google Scholar]
  24. GiustinianiM., TinivellaU. and NicolichR.2015. Reflection seismic sections across the Geothermal Province of Tuscany from reprocessing CROP profiles. Geothermics53, 498–507.
    [Google Scholar]
  25. HloušekF. and BuskeS.2016. Fresnel volume migration of the ISO89‐3D data set. Geophysical Journal International207, 1273–1285.
    [Google Scholar]
  26. HloušekF., HellwigO. and BuskeS.2015. Improved structural characterization of the earth's crust at the German Continental Deep Drilling Site using advanced seismic imaging techniques. Journal of Geophysical Research, Solid Earth120, 6943–6959.
    [Google Scholar]
  27. LamarcheG.1992. Seismic reflection survey in the geothermal field of the Rotorua Caldera, New Zealand. Geothermics21, 109–119.
    [Google Scholar]
  28. LiottaD. and RanalliG.1999. Correlation between seismic reflectivity and rheology in extended lithosphere: Southern Tuscany, inner Northern Apennines, Italy. Tectonophysics315, 109–122.
    [Google Scholar]
  29. LüschenE., WolfgrammM., FritzerT., DusselM., ThomasR. and SchulzR.2014. 3D seismic survey explores geothermal targets for reservoir characterization at Unterhaching, Munich, Germany. Geothermics50, 167–179.
    [Google Scholar]
  30. LüthS., BuskeS., GieseR. and GoertzA.2005. Fresnel volume migration of multicomponent data. Geophysics70, S121–S129.
    [Google Scholar]
  31. MatsushimaJ., OkuboY., RokugawaS., YokotaT., TanakaK., TsuchiyaT., et al. 2003. Seismic reflector imaging by prestack time migration in the Kakkonda geothermal field, Japan. Geothermics32, 79–99.
    [Google Scholar]
  32. MayJ.A., MeederC.A., TinkleA.R. and WenerK.R.1988. Seismic no‐data zone, offshore Mississippi delta: Part II – using geologic information to predict acoustic properties. Offshore Technology Conference, Offshore Technology Conference.
  33. MazzottiA., StucchiE., FradelizioG.L. and ZanziL.2007a. Analysis of the CROP‐04 seismic data. Bollettino della Società Geologica Italiana7, 129–140.
    [Google Scholar]
  34. MazzottiA.P., StucchiE., FradelizioG.L., ZanziL. and ScandoneP.2000. Seismic exploration in complex terrains: a processing experience in the Southern Apennines. Geophysics65, 1402–1417.
    [Google Scholar]
  35. MazzottiA., StucchiE., FradelizioG., ZanziL. and ScandoneP.2007b. Re‐processing of the CROP‐04 seismic data. Bollettino della Società Geologica Italiana7, 141–153.
    [Google Scholar]
  36. PalmerD.1980. The Generalized Reciprocal Method of Seismic Refraction Interpretation. Society of Exploration Geophysicists.
    [Google Scholar]
  37. PandeliE., GianelliG. and MorelliM.2005. The crystalline units of the middle‐upper crust of the Lgeothermal region (Southern Tuscany, Italy): new data for their classification and tectono‐metamorphic evolution. Bollettino della Società Geologica Italiana3, 139–155.
    [Google Scholar]
  38. PodvinP. and LecomteI.1991. Finite difference computation of traveltimes in very contrasted velocity models: a massively parallel approach and its associated tools. Geophysical Journal International105, 271–284.
    [Google Scholar]
  39. ReshefM.1991. Prestack depth imaging of three‐dimensional shot gathers. Geophysics56, 1158–1163.
    [Google Scholar]
  40. ReshefM. and KosloffD.1986. Migration of common‐shot gathers. Geophysics51, 324–331.
    [Google Scholar]
  41. RiedelM., DutschC., AlexandrakisC., DiniI., CiuffiS. and BuskeS.2015. Seismic depth imaging of a geothermal system in Southern Tuscany. Geophysical Prospecting63, 957–974.
    [Google Scholar]
  42. RonenJ. and ClaerboutJ.F.1985. Surface‐consistent residual statics estimation by stack‐power maximization. Geophysics50, 2759–2767.
    [Google Scholar]
  43. SchneiderW.A.1978. Integral formulation for migration in two and three dimensions. Geophysics43, 49–76.
    [Google Scholar]
  44. TinivellaU., AccainoF., RossiG. and NicolichR.2005. Petrophysical analysis of CROP‐18 crustal seismic data. Bollettino della Società Geologica Italiana3, 205–211.
    [Google Scholar]
  45. VanorioT., De MatteisR., ZolloA., BatiniF., FiordelisiA. and CiulliB.2004. The deep structure of the Larderello‐Travale geothermal field from 3D microearthquake traveltime tomography. Geophysical Research Letters31, L07613.
    [Google Scholar]
  46. VillaI.M. and PuxedduM.1994. Geochronology of the Larderello geothermal field: new data and the ‘closure temperature’ issue. Contributions to Mineralogy and Petrology115, 415–426.
    [Google Scholar]
  47. YilmazÖ. 2001. Seismic Data Analysis: Processing, Inversion, and Interpretation of Seismic Data. Society of Exploration Geophysicists.
    [Google Scholar]
  48. ZhangH., XuJ. and LiJ.2016. Enhanced 3D prestack depth imaging of broadband data from the South China Sea: a case study. Exploration Geophysics47, 219–227.
    [Google Scholar]
  49. ZhangJ. and ToksözM.N.1998. Nonlinear refraction traveltime tomography. Geophysics63, 1726–1737.
    [Google Scholar]
  50. ZhangJ., YilmazÖ. and DaiN.2006. First‐arrival tomostatics and residual statics for near‐surface corrections. CSPG CSEG CWLS Convention, CSPG CSEG CWLS Convention.
  51. ZhuX., SixtaD.P. and AngstmanB.G.1992. Tomostatics: turning‐ray tomography + static corrections. The Leading Edge11, 15–23.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/1365-2478.12723
Loading
/content/journals/10.1111/1365-2478.12723
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): Geothermal; K‐Horizon; Seismic imaging

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error