1887
Volume 25, Issue 1
  • ISSN: 1354-0793
  • E-ISSN:

Abstract

The Vienna Basin, a major petroleum province in Central Europe, hosts hydrocarbons in stacked carbonate and siliciclastic reservoirs. The study of 84 oil and 51 gas samples in the Austrian sector yields new insights into the petroleum system. The Upper Jurassic Mikulov and Falkenstein formations are the only significant source rocks, which generated oil between 0.7 and 1.0%Rr, and gas between 1.1 and 1.6%Rr. Microbial gas prevails in the southern part of the basin. Biodegradation affects oil down to a depth of 2000 m. Miocene reservoirs in the hanging wall of major faults and oils in transgressive sands are more prone to biodegradation than footwall flysch reservoirs and oils in turbiditic sands in structural-stratigraphic traps. Anaerobic biodegradation results in the formation of isotopically heavy CO and isotopically light (secondary) microbial methane. Hydrocarbons in deep carbonate reservoirs are affected by thermochemical sulphate reduction (TSR). While TSR-affected gas is rich in HS and CO, TSR-affected oil is characterized by increased dibenzothiophene/phenantrene (DBT/Ph) ratios. In clastic reservoirs, HS is removed by pyrite precipitation, whereas DBT/Ph ratios remain high. Hence, high DBT/Ph ratios may be used as proxy for TSR. Stable sulphur isotopes signatures confirm Upper Triassic anhydrites as the main sulphur source for HS.

Loading

Article metrics loading...

/content/journals/10.1144/petgeo2017-056
2018-05-29
2024-04-18
Loading full text...

Full text loading...

References

  1. Alexander, R., Kagi, R.I., Woodhouse, G.W. & Volkman, J.K.
    1983. The geochemistry of some biodegraded Australian oils. Australian Petroleum Exploration Association Journal, 23, 53–63.
    [Google Scholar]
  2. Amrani, A., Deev, A. et al.
    2012. The sulfur-isotopic composition of benzothiophenes and dibenzothiophenes as a proxy for thermochemical sulfate reduction. Geochimica et Cosmochimica Acta, 84, 152–164.
    [Google Scholar]
  3. Arzmüller, G., Buchta, S., Ralbovsky, E. & Wessely, G.
    2006. The Vienna basin. In: Golonka, J. & Picha, F.J. (eds) The Carpathians and their Foreland: Geology and Hydrocarbon Resources. AAPG Memoirs, 84, 191–204.
    [Google Scholar]
  4. Beidinger, A. & Decker, K.
    2014. Quantifying Early Miocene in-sequence and out-of-sequence thrusting at the Alpine–Carpathian junction. Tectonics, 33, 222–252.
    [Google Scholar]
  5. Bernard, B.B., Brooks, J.M. & Sackett, W.M.
    1978. Light hydrocarbons in recent Texas continental shelf and slope sediments. Journal of Geophysical Research, 83, 4053–4061.
    [Google Scholar]
  6. Berner, U. & Faber, E.
    1996. Empirical carbon isotope/maturity relationships for gases from algal kerogens and terrigenous organic matter, based on dry, open-system pyrolysis. Organic Geochemistry, 24, 947–995.
    [Google Scholar]
  7. Blanc, P. & Connan, J.
    1994. Preservation, degradation and destruction of trapped oil. In: Magoon, L.B. & Dow, W.G. (eds) The Petroleum System – From Source to Trap. AAPG, Tulsa, OK, 237–247.
    [Google Scholar]
  8. Brooks, P.W., Macqueen, R.W., Fowler, M.G. & Riediger, C.L.
    1988. Biological marker and conventional organic geochemistry of oil sands/heavy oils, Western Canada Basin. Organic Geochemistry, 12, 519–538.
    [Google Scholar]
  9. Brown, A.
    2011. Identification of source carbon for microbial methane in unconventional gas reservoirs. AAPG Bulletin, 95, 1321–1338.
    [Google Scholar]
  10. Bryan, E.E. & Evans, E.D.
    1961. Distribution of n-paraffins as a clue to recognition of source beds. Geochimica et Cosmochimica Acta, 22, 2–15.
    [Google Scholar]
  11. Cai, C., Hu, W. & Worden, R.H.
    2001. Thermochemical sulphate reduction in Cambro-Ordovician carbonates in central Tarim. Marine and Petroleum Geology, 18, 729–741.
    [Google Scholar]
  12. Chung, H.M., Gormly, J.R. & Squires, R.M.
    1988. Origin of gaseous hydrocarbons in subsurface environments: Theoretical considerations of carbon isotope distribution. Chemical Geology, 71, 97–104.
    [Google Scholar]
  13. Connan, J.
    1984. Biodegradation of crude oils in reservoirs. In: Brooks, J. & Welte, D.H. (eds) Advances in Petroleum Geochemistry. Volume 1. Academic Press, London, 299–335.
    [Google Scholar]
  14. Connan, J. & Cassou, A.M.
    1980. Properties of gases and petroleum lipids derived from terrestrial kerogen at various maturation levels. Geochimica et Cosmochimica Acta, 44, 1–23.
    [Google Scholar]
  15. Coplen, T.B.
    1995. New IUPAC guidelines for the reporting of stable hydrogen, carbon, and oxygen isotope-ratio data. Journal of Research of the National Institute of Standards and Technology, 10, 285.
    [Google Scholar]
  16. Didyk, B.M., Simoneit, B.R.T., Brassell, S.C. & Eglinton, G.
    1978. Organic geochemical indicators of palaeoenvironmental conditions of sedimentation. Nature, 272, 216–222.
    [Google Scholar]
  17. Francu, J., Radke, M., Schaefer, R.G., Poelchau, H.S., Caslavsky, J. & Bohacek, Z.
    1996. Oil–oil and oil–source correlations in the northern Vienna Basin and adjacent Carpathian Flysch Zone (Czech and Slovak area). In: Wessely, G. & Liebl, W. (eds) Oil and Gas in Alpidic Thrustbelts and Basins of Central and Eastern Europe. EAGE Special Publications, 5, 343–353.
    [Google Scholar]
  18. Gerslova, E., Opletal, V., Sykorova, I., Sedlakova, I. & Gersl, M.
    2015. A geochemical and petrographical characterization of organic matter in the Jurassic Mikulov Marls from the Czech Republic. International Journal of Coal Geology, 141–142, 42–50.
    [Google Scholar]
  19. Glantschnig, J. & Kroell, E.
    1997. Injection of nitrogen for improved oil recovery: A successful case history. Presented at the15th World Petroleum Congress, 12–17 October 1997, Beijing, China.
    [Google Scholar]
  20. Grantham, P.J. & Wakefield, L.L.
    1988. Variations in the sterane carbon number distributions of marine source rock derived crude oils through geological time. Organic Geochemistry, 12, 61–73.
    [Google Scholar]
  21. Hamilton, W., Wagner, L. & Wessely, G.
    2000. Oil and Gas in Austria. Mitteilungen der Österreichischen Geologischen Gesellschaft, 92, 235–262.
    [Google Scholar]
  22. Hilkert, A.W., Douthitt, C.B., Schlüter, H.J. & Brand, W.A.
    1999. Isotope ratio monitoring gas chromatography/mass spectrometry of D/H by high temperature conversion isotope ratio mass spectrometry. Rapid Communications in Mass Spectrometry, 13, 1226–1230.
    [Google Scholar]
  23. Jiang, C., Alexander, R., Kagi, R.I. & Murray, A.P.
    2000. Origin of perylene in ancient sediments and its geological signifcance. Organic Geochemistry, 31, 1545–1559.
    [Google Scholar]
  24. Jones, D.M., Head, I.M. et al.
    2008. Crude-oil biodegradation via methanogenesis in subsurface petroleum reservoirs. Nature, 451, 176–181.
    [Google Scholar]
  25. Killops, S.D. & Killops, V.J.
    1993. An Introduction to Organic Geochemistry. Longman, Harlow, UK.
    [Google Scholar]
  26. King, H.E., Walters, C.C. et al.
    2014. Sulfur isotope analysis of bitumen and pyrite associated with thermal sulfate reduction in reservoir carbonates at the Big Piney–La Barge production complex. Geochimica et Cosmochimica Acta, 134, 210–220.
    [Google Scholar]
  27. Kratochvil, H. & Ladwein, H.W.
    1984. Die Muttergesteine der Kohlenwasserstofflagerstätten im Wiener Becken und ihre Bedeutung für zukünftige Exploration [The Vienna Basin hydrocarbon source rocks and their importance for future exploration]. Erdöl Erdgas, 100, 107–115.
    [Google Scholar]
  28. Kreutzer, N.
    1993a. Das Neogen des Wiener Beckens [The Neogene of the Vienna Basin]. In: Brix, F. & Schultz, O. (eds) Erdöl und Erdgas in Österreich. Naturhistorischen Museum, Wien und F. Berger, Horn, Austria.
    [Google Scholar]
  29. 1993b. Die Lagerstätten des Wiener Beckens und seines Untergrundes [The Reservoirs of the Vienna Basin and Underlaying Units]. In: Brix, F. & Schultz, O. (eds) Erdöl und Erdgas in Österreich. Naturhistorischen Museum, Wien und F. Berger, Horn, Austria.
    [Google Scholar]
  30. Kroell, E. & Glantschnig, J.
    1997. Injection of nitrogen for improved oil recovery: A successful case history. Presented at the15th World Petroleum Congress, 12–17 October 1997, Beijing, China.
    [Google Scholar]
  31. Kröll, A. & Wessely, G.
    1993. Wiener Becken und angrenzende Gebiete: Strukturkarte – Basis der tertiären Beckenfüllung [Vienna Basin and surrounding areas: Structural Map – Base of tertiary sediments]. Geologischen Bundesanstalt, Wien, Austria.
    [Google Scholar]
  32. Krouse, H.R.
    1977. Sulfur isotope studies and their role in petroleum exploration. Journal of Geochemical Exploration, 7, 189–211.
    [Google Scholar]
  33. Ladwein, H.W.
    1982. Bericht über H2S-Verbreitung und Herkunft in Lagerstätten der ÖMV-AG und mögliches H2S-Auftreten bei künftigen Explorationszielen [Report on H2S distribution and origin in reservoirs of the ÖMV-AG and probable H2S encounters in future exploration]. Unpublished internal OMV report.
    [Google Scholar]
  34. 1988. Organic geochemistry of Vienna Basin: Model for hydrocarbon generation in overthrust belts. AAPG Bulletin, 72, 586–599.
    [Google Scholar]
  35. Larter, S.R. & di Primo, R.
    2005. Effects of biodegradation on oil and gas field PVT properties and the origin of oil rimmed gas accumulations. Organic Geochemistry, 36, 299–310.
    [Google Scholar]
  36. Leutner, M.
    1990. Die Temperaturverteilung im Neogen des Wiener Beckens und dessen Untergrund [Temperature distribution in the Vienna Basin]. Master's thesis, Montanuniversität Leoben, Leoben, Austria.
    [Google Scholar]
  37. Liu, Q.Y., Worden, R.H. et al.
    2014. Thermochemical sulphate reduction (TSR) versus maturation and their effects on hydrogen stable isotopes of very dry alkane gases. Geochimica et Cosmochimica Acta, 137, 208–220.
    [Google Scholar]
  38. Machel, H.G.
    1998. Gas souring by thermochemical sulfate reduction at 140°C: discussion. AAPG Bulletin, 82, 1870–1873.
    [Google Scholar]
  39. 2001. Bacterial and thermochemical sulfate redudtion in diagenetic settings – old and new insights. Sedimentary Geology, 140, 143–175.
    [Google Scholar]
  40. Machel, H.G., Krouse, H.R. & Sassen, R.
    1995. Products and distinguishing criteria of bacterial and thermochemical sulfate reduction. Applied Geochemistry, 10, 373–389.
    [Google Scholar]
  41. Mackenzie, A.S.
    1984. Application of biological markers in petroleum geochemistry. In: Brooks, J. & Welte, D.H. (eds) Advances in Petroleum Geochemistry. Volume 1. Academic Press, London, 115–214.
    [Google Scholar]
  42. Mackenzie, A.S. & Maxwell, J.R.
    1981. Assessment of thermal maturation in sedimentary rocks by molecular measurements. In: Brooks, J. (ed.) Organic Maturation Studies and Fossil Fuel Exploration. Academic Press, London, 239–254.
    [Google Scholar]
  43. Milkov, A.V.
    2010. Methanogenic biodegradation of petroleum in the West Siberian basin (Russia): Significance for formation of giant Cenomanian gas pool. AAPG Bulletin, 94, 1485–1541.
    [Google Scholar]
  44. 2011. Worldwide distribution and significance of secondary microbial methane formed during petroleum biodegradation in conventional reservoirs. Organic Geochemistry, 42, 184–207.
    [Google Scholar]
  45. Milner, C.W.D., Rogers, M.A. & Evans, C.R.
    1977. Petroleum transformation in reservoirs. Journal of Geochemical Exploration, 7, 101–153.
    [Google Scholar]
  46. Moldowan, J.M., Lee, C.Y. & Sundararaman, P.
    1992. Source correlation and maturity assessment of selected oils and rocks from the Central Adriatic Basin (Italy and Yugoslavia). In: Moldowan, J.M., Albrecht, P. & Philips, R.P. (eds) Biological Markers in Sediments and Petroleum. Prentice-Hall, Englewoods Cliffs, NJ, 307–401.
    [Google Scholar]
  47. Nöth, S.
    1997. High H2S contents and other effects of thermochemical sulfate reduction in deeply buried carbonate reservoirs: a review. Geologische Rundschau, 86, 275–287.
    [Google Scholar]
  48. Oremland, R.S., Whiticar, M.J., Strohmaier, F.E. & Kiene, R.P.
    1988. Bacterial ethane formation from reduced, ethylated sulfur compounds in anoxic sediments. Geochimica et Cosmochimica Acta, 52, 1895–1904.
    [Google Scholar]
  49. Orr, W.L.
    1974. Changes in sulfur content and isotopic ratios of sulfur during petroleum maturation-study of Big Horn Paleozoic oils. AAPG Bulletin, 58, 2295–2318.
    [Google Scholar]
  50. Palmer, S.E.
    1993. Effect of biodegradation and water washing on crude oil composition. In: Engel, M.H. & Macko, S.A. (eds) Organic Geochemistry. Plenum Press, New York.
    [Google Scholar]
  51. Peters, K.E., Walters, C.C. & Moldowan, J.M.
    2005. The Biomarker Guide. 2nd edn. Cambridge University Press, Cambridge.
    [Google Scholar]
  52. Picha, F.J. & Peters, K.E.
    1998. Biomarker oil-to-source rock correlation in the Western Carpathians and their foreland, Czech Republic. Petroleum Geoscience, 4, 289–302, https://doi.org/10.1144/petgeo.4.4.289
    [Google Scholar]
  53. Piller, W.E., Egger, H. et al.
    2004. Die stratigraphische Tabelle von Österreich 2004 (sedimentäre Schichtfolge) [The stratigraphic chart of Austria 2004]. Österreiche Akademie der Wissenschaften, Wien, Austria.
    [Google Scholar]
  54. Potsch, K., Ramberger, R., Glantschnig, J., Baumgarthuber, S. & Göbnitzer, F.
    2004. Gas injection pilot in the Hochleiten Field. Presented at theSPE/DOE Symposium on Improved Oil Recovery, 17–21 April 2004, Tulsa, Oklahoma, USA.
    [Google Scholar]
  55. Radke, J. & Welte, D.H.
    1983. The methylphenatrene index (MPI). A maturity parameter based on aromatic hydrocarbons. In: Bjoroy, M., Albrecht, C. et al. (eds) Advances in Organic Geochemistry 1981. Wiley, New York, 504–512.
    [Google Scholar]
  56. Radke, M., Willsch, H. & Welte, D.H.
    1980. Preparative hydrocarbon group type determination by automated medium pressure liquid chromatography. Analytical Chemistry, 52, 406–411.
    [Google Scholar]
  57. Rupprecht, B.J.
    2017. Hydrocarbon generation and alteration in the Vienna Basin. PhD thesis, Montanuniversität Leoben, Leoben, Austria.
    [Google Scholar]
  58. Rupprecht, B.J., Sachsenhofer, R.F., Gawlick, H.-J., Kallanxhi, M.-E. & Kucher, F.
    2017. Jurassic source rocks in the Vienna Basin/Austria: Assessment of conventional and unconventional petroleum potential. Marine and Petroleum Geology, 86, 1327–1356.
    [Google Scholar]
  59. Sachsenhofer, R.F., Bechtel, A., Kuffner, T., Rainer, T., Gratzer, R., Sauer, R. & Sperl, H.
    2006. Depositional environment and source potential of Jurassic coal-bearing sediments (Gresten Formation, Höflein gas/condensate field, Austria). Petroleum Geoscience, 12, 99–114, https://doi.org/10.1144/1354-079305-684
    [Google Scholar]
  60. Sassen, R.
    1988. Geochemical and carbon isotopic studies of crude oil destruction, bitumen precipitation, and sulfate reduction in the deep Smackover formation. Organic Geochemistry, 12, 351–361.
    [Google Scholar]
  61. Schoell, M.
    1984. Wasserstoff- und Kohlenstoffisotope organischer Substanzen, Erdölen und Erdgasen [Hydrogen- and carbon isotopes of organic substances, oil and gas]. Geologisches Jahrbuch Reihe D, 67, 136–140.
    [Google Scholar]
  62. Seifert, P.
    1996. Sedimentary-tectonic development and Austrian hydrocarbon potential of the Vienna Basin and the adjacent Alpine–Carpatian thrustbelt in Austria. Austrian Journal of Earth Sciences, 85, 5–39.
    [Google Scholar]
  63. Shi, J.-Y., Mackenzie, A.S. & Alexander, R.
    1982. A biological marker investigation of petroleums and shales from the Shengli oilfield, the Peoplés Republic of China. Chemical Geology, 35, 1–31.
    [Google Scholar]
  64. Sieskind, O., Joly, G. & Albrecht, P.
    1979. Simulation of the geochemical transformations of sterols: superacid effect of clay minerals. Geochimica et Cosmochimica Acta, 43, 1675–1679.
    [Google Scholar]
  65. Silverman, S.R.
    1965. Migration and segregation of oil and gas. In: Young, A. & Galley, G.E. (eds) Fluids in Subsurface Environments. AAPG Memoirs, 4, 53–65.
    [Google Scholar]
  66. Sofer, Z.
    1984. Stable carbon isotope composition of crude oil, application to source depositonal environment and petroleum alteration. AAPG Bulletin, 68, 31–49.
    [Google Scholar]
  67. Steininger, F.F., Wessely, G., Rögl, F. & Wagner, L.
    1986. Tertiary sedimentary history and tectonic evolution of the eastern Alpine foredeep. Giornale de Geologic, ser. 3, 48, 285–297.
    [Google Scholar]
  68. Thompson, K.F.M.
    1987. Fractionated aromatic petroleums and the generation of gas-condensate. Organic Geochemistry, 11, 573–590.
    [Google Scholar]
  69. 1988. Gas-condensate migration and oil fractionation in deltaic systems. Marine and Petroleum Geology, 5, 237–246.
    [Google Scholar]
  70. Tissot, B.T. & Welte, D.H.
    1984. Petroleum Formation and Occurrences. 2nd edn.Springer, Berlin.
    [Google Scholar]
  71. Truche, L., Bazarkina, E.F., Barre, G., Thomassot, E., Berger, G., Dubessy, J. & Robert, P.
    2014. The role of S3− ion in thermochemical sulphate reduction. Geological and geochemical implications. Earth and Planetary Science Letters, 396, 190–200.
    [Google Scholar]
  72. Venkatesan, M.I.
    1988. Occurrence and possible sources of perylene in marine sediments – a review. Marine Chemistry, 25, 1–27.
    [Google Scholar]
  73. Vögl, W.
    1966. Produktionserfahrungen in den alten Ölfeldern Zistersdorf und Gaiselberg der RAG [Experience in production in mature reservoirs Zistersdorf and Gaislberg of RAG]. Erdöl-Erdgas-Zeitschrift, 82, 192–206.
    [Google Scholar]
  74. Weissenbäck, M.
    1996. Miocene sedimentation in the Vienna Basin. In: Wessely, G. & Liebl, W. (eds) Oil and Gas in Alpidic Thrustbelts and Basins of Central and Eastern Europe. EAGE Special Publications, 5, 355–363.
    [Google Scholar]
  75. Wenger, L.M. & Isaksen, G.H.
    2002. Control of hydrocarbon seepage intensity on level of biodegadation in sea bottom sediments. Organic Geochemistry, 33, 1277–1292.
    [Google Scholar]
  76. Wessely, G.
    1988. Structure and development of the Vienna basin. In: Royden, L. & Horvath, F. (eds) The Pannonian Basin: A Study in Basin Evolution. AAPG Memoirs, 45, 333–346.
    [Google Scholar]
  77. 2000. Sedimente des Wiener Beckens und seiner alpinen und subalpinen Unterlagerung [The Vienna Basin and its alpine and subalpine basement]. Mitteilungen der Gesellschaft der Geologie- und Bergbaustudenten in Österreich, 44, 191–214.
    [Google Scholar]
  78. 2006. Geologie der Österreichischen Bundesländer: Niederösterreich [Geology of Austrian states: Lower Austria]. Geologischen Bundesanstalt, Wien, Austria.
    [Google Scholar]
  79. Wessely, G., Buchholz, G. et al.
    1993a. Geologischer Tiefbau Wiener Becken-Flysch-Kalkalpenzone [The deeper structure of the Vienna Basin comprising Flysch and Calcareous Alps]. Geologischen Bundesanstalt, Wien, Austria.
    [Google Scholar]
  80. Wessely, G., Kröll, A., Jiricek, R. & Nemec, F.
    1993b. Wiener Becken und angrenzende Gebiete – Geologische Einheiten des präneogenen Beckenuntergrundes [Vienna Basin and surrounding area – Geological units beneath the Miocene basin fill]. Geologischen Bundesanstalt, Wien, Austria.
    [Google Scholar]
  81. Whiticar, M.J. & Suess, E.
    1990. Hydrothermal hydrocarbon gases in the sediments of the King George Basin, Bransfield Strait, Antarctica. Applied Geochemistry, 5, 135–147.
    [Google Scholar]
  82. Worden, R.H. & Smalley, P.C.
    1996. H2S-producing reactions in deep carbonate gas reservoirs: Khuff Formation, Abu Dhabi. Chemical Geology, 133, 157–171.
    [Google Scholar]
  83. Worden, R.H., Smalley, P.C. & Oxtoby, N.H.
    1995. Gas souring by thermochemical sulfate reduction at 140°C. AAPG Bulletin, 79, 854–863.
    [Google Scholar]
  84. Zhang, T., Ellis, G.S., Wang, K.-S., Walters, C.C., Kelemen, S.R., Gillaizeau, B. & Tang, Y.
    2007. Effect of hydrocarbon type on thermochemical sulfate reduction. Organic Geochemistry, 38, 897–910.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1144/petgeo2017-056
Loading
/content/journals/10.1144/petgeo2017-056
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error