1887
Volume 31, Issue 2
  • E-ISSN: 1365-2117

Abstract

Abstract

In this paper, a literature‐based compilation of the timing and history of salt tectonics in the Southern Permian Basin (Central Europe) is presented. The tectono‐stratigraphic evolution of the Southern Permian Basin is influenced by salt movement and the structural development of various types of salt structures. The compilation presented here was used to characterize the following syndepositional growth stages of the salt structures: (a) “phase of initiation”; (b) phase of fastest growth (“main activity”); and (c) phase of burial’. We have also mapped the spatial pattern of potential mechanisms that triggered the initiation of salt structures over the area studied and summarized them for distinct regions (sub‐basins, platforms, etc.). The data base compiled and the set of maps produced from it provide a detailed overview of the spatial and temporal distribution of salt tectonic activity enabling the correlation of tectonic phases between specific regions of the entire Southern Permian Basin. Accordingly, salt movements were initiated in deeply subsided graben structures and fault zones during the Early and Middle Triassic. In these areas, salt structures reached their phase of main activity already during the Late Triassic or the Jurassic and were mostly buried during the Early Cretaceous. Salt structures in less subsided sub‐basins and platform regions of the Southern Permian Basin mostly started to grow during the Late Triassic. The subsequent phase of main activity of these salt structures took place from the Late Cretaceous to the Cenozoic. The analysis of the trigger mechanisms revealed that most salt structures were initiated by large‐offset normal faults in the sub‐salt basement in the large graben structures and minor normal faulting associated with thin‐skinned extension in the less subsided basin parts.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12323
2018-12-05
2024-03-29
Loading full text...

Full text loading...

References

  1. Al Hseinat, M., Hübscher, C., Lang, J., Lüdmann, T., Ott, I., & Polom, U. (2016). Triassic to recent tectonic evolution of a crestal collapse graben above a salt‐cored anticline in the Glückstadt Graben/North German Basin. Tectonophysics, 680, 50–66. https://doi.org/10.1016/j.tecto.2016.05.008
    [Google Scholar]
  2. Allen, M. R., Griffiths, P. A., Craig, J., Fitches, W. R., & Whittington, R. J. (1994). Halokinetic initiation of Mesozoic tectonics in the southern North Sea: A regional model. Geological Magazine, 131(4), 559–561. https://doi.org/10.1017/S0016756800012164
    [Google Scholar]
  3. Arfai, J., Jähne, F., Lutz, R., Franke, D., Gaedicke, C., & Kley, J. (2014). Late Palaeozoic to Early Cenozoic geological evolution of the northwestern German North Sea (Entenschnabel): New results and insights. Netherlands Journal of Geosciences/Geologie en Mijnbouw, 93(4), 147–174. https://doi.org/10.1017/njg.2014.22
    [Google Scholar]
  4. Bachmann, G. H., Voigt, T., Bayer, U., Eynatten, H., Legler, B., & Littke, R. (2008). Depositional history and sedimentary cycles in the Central European Basin System. In R.Littke , U.Bayer , D.Gajewski & S.Nelskamp (Eds.), Dynamics of complex intracontinental basins: The Central European Basin System (pp. 157–172). Berlin, Heidelberg, Germany: Springer‐Verlag.
    [Google Scholar]
  5. Baldschuhn, R., Best, G., & Kockel, F. (1991). Inversion tectonics in the north‐west German basin. In A. M.Spencer (Ed.), Generation, accumulation, and production of Europe's hydrocarbons, Spec. Publ. Eur. Assoc. Petroleum Geosci., 1, 149–159.
    [Google Scholar]
  6. Baldschuhn, R., Binot, F., Fleig, S., Kockel, F., (Hrsg.) unter Mitarbeit von: Best, G., Brückner‐Röhling, S., … Zirngast, M. (2001). Geotektonischer Atlas von Nordwest‐Deutschland und dem deutschen Nordsee‐Sektor. Strukturen, Strukturentwicklung, Paläogeographie. Geol. Jahrb., A 153:1–88, 3 CD–ROMs.
  7. Baldschuhn, R., Frisch, U., & Kockel, F. (1985). Inversionsstrukturen in NW‐Deutschland und ihre Genese. Zeitschrift der Deutschen Geologischen Gesellschaft, 136, 129–139.
    [Google Scholar]
  8. Baldschuhn, R., Frisch, U., & Kockel, F. (1998). Der Salzkeil, ein strukturelles Requisit der saxonischen Tektonik. Zeitschrift der Deutschen Geologischen Gesellschaft, 149(1), 59–69.
    [Google Scholar]
  9. Baldschuhn, R., Frisch, U., Kockel, F., (Hrsg.) unter Mitarbeit von: Best, G., Deneke, E., Jürgens, U., … Zirngast, M. (1996). Geotektonischer Atlas von NW‐Deutschland 1:300.000, Teile 1–17; 17 Karten. Hannover, Germany: Bundesanstalt für Geowissenschaften und Rohstoffe.
  10. Barnasch, J. (2010). Der Keuper im Westteil des Zentraleuropäischen Beckens (Deutschland, Niederlande, England, Dänemark): Diskontinuierliche Sedimentation, Litho‐, Zyklo‐ und Sequenzstratigraphie. Schriftenreihe der Deutschen Gesellschaft für Geowissenschaften, 71, 7–169.
    [Google Scholar]
  11. Benox, D., Ludwig, A. O., Schulze, W., Schwab, G., Hartmann, H., Knebel, G., & Januszewski, I. (1997). Struktur und entwicklung mesozoischer störungszonen in der südwest‐altmark. Hallesches Jahrbuch für Geowissenschaften, B 19, 83–114.
    [Google Scholar]
  12. Bertelsen, F., Bless, M. J. M., Gajewska, I., Glusko, W. W., Kisnerjus, J. L., Kockel, F., … Watson, W. (1986). Lithologicpalaeogeographical map Middle Bunter (Triassic), inset map 1 : 10 000 000 (First version) IGCP‐Projekt No. 86: Southwest border of the East European Platform, edited by the National Committee of the German Democratic Republic.
  13. Best, G. (1996). Floßtektonik in Norddeutschland: Erste Ergebnisse reflexionsseismischer Untersuchungen an der Salzstruktur “Oberes Allertal”. Zeitschrift der Deutschen Geologischen Gesellschaft, 147(4), 455–464.
    [Google Scholar]
  14. Best, G., Kockel, F., & Schöneich, H. (1983). Geological history of the southern Horn Graben. Geologie en Mijnbouw, 62, 25–33.
    [Google Scholar]
  15. Best, G., & Zirngast, M. (2002). Die strukturelle Entwicklung der exhumierten Salzstruktur “Oberes Allertal”. Geologie Jahrbuch Sonderhefte, A 1, 1–518.
    [Google Scholar]
  16. Betz, D., Führer, F., Greiner, G., & Plein, E. (1987). Evolution of the Lower Saxony basin. Tectonophysics, 137(1), 127–170. https://doi.org/10.1016/0040-1951(87)90319-2
    [Google Scholar]
  17. Beutler, G., Junker, R., Niediek, S., & Rößler, D. (2012). Tektonische Diskordanzen und tektonische Zyklen im Mesozoikum Nordostdeutschlands. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften, 163(4), 447–468. https://doi.org/10.1127/1860-1804/2012/0163-0447
    [Google Scholar]
  18. Beutler, G., & Schüler, F. (1978). Über altkimmerische Bewegungen im Norden der DDR und ihre regionale Bedeutung (Fortschrittsbericht). Zeitschrift für Geologische Wissenschaften, 6, 403–420.
    [Google Scholar]
  19. Beutler, G., & Tessin, R. (2005). Der Keuper im Norddeutschen Becken. In G. F. D. S. P.‐T.Beutler (Ed.), Stratigraphie von Deutschland, IV. Keuper, Deutsche Stratigraphische Kommission, Cour. Forschungsinst. Senckenb., 253:296 pp.
  20. Bombien, H., Hoffers, B., Breuckmann, S., Helms, M., Lademann, K., Lange, M., … Ziesch, J. (2012). Der Geotektonische Atlas von Niedersachsen und dem deutschen Nordseesektor als geologisches 3D‐Modell. Geowiss. Mitt, 48:6–13.
  21. Brandes, C., Schmidt, C., Tanner, D., Pollok, L., & Winsemann, J. (2013). Salt tectonics of the Subhercynian Basin, Northern Germany‐From Paleostress field analysis to basin modelling. In 75th EAGE conference & exhibition incorporating SPE EUROPEC 2013, pages 1–5.
  22. Brandes, C., Schmidt, C., Tanner, D. C., & Winsemann, J. (2013). Paleostress pattern and salt tectonics within a developing foreland basin (north‐western Subhercynian Basin, northern Germany). International Journal of Earth Sciences, 102(8), 2239–2254. https://doi.org/10.1007/s00531-013-0911-7
    [Google Scholar]
  23. Brink, H. J., Dürschner, H., & Trappe, H. (1992). Some aspects of the late and post‐Variscan development of the Northwestern German Basin. Tectonophysics, 207(1), 65–95. https://doi.org/10.1016/0040-1951(92)90472-I
    [Google Scholar]
  24. Bundesanstalt für Geowissenschaften und Rohstoffe (BGR)
    Bundesanstalt für Geowissenschaften und Rohstoffe (BGR) , Leibniz Universitt Hannover – Institut für Geotechnik/Abteilung Unterirdisches Bauen (IGtH) , & KBB Underground Technologies GmbH (KBB UT) (2016). Informationssystem Salzstrukturen: Planungsgrundlagen, Auswahlkriterien und Potentialabschätzung fr die Errichtung von Salzkavernen zur Speicherung von Erneuerbaren Energien (InSpEE) (Wasserstoff und Druckluft). Technical Report 03ESP323B. Energiespeicher – Forschungsinitiative der Bundesregierung, pages 346. Retrieved from https://www.bgr.bund.de/DE/Themen/Nutzung_tieferer_Untergrund_CO2Speicherung/Downloads/InSpEE_Abschlussbericht.pdf?__blob=publicationFile&v=4$
  25. Clark‐Lowes, D. D., Kuzemko, N. C. J., & Scott, D. A. (1987). Structure and petroleum prospectivity of the Dutch Central Graben and neighbouring platform areas. In J.Brooks & K. W.Glennie (Eds.), Proceedings of the 3rd conference on petroleum geology of North West Europe, Graham & Trotman, London, 1:337–356.
  26. Coward, M., & Stewart, S. (1995). Salt‐inuenced structures in the Mesozoic‐Tertiary cover of the southern North Sea, UK. In M.Jackson , D.Roberts & S.Snelson (Eds.), Salt tectonics; a global perspective, American Association of Petroleum Geologists, 65:229–250.
  27. Dadlez, R. (2003). Mesozoic thickness pattern in the Mid‐Polish Trough. Geological Quarterly, 47(3), 223–240.
    [Google Scholar]
  28. Dadlez, R., Marek, S., & Pokorski, J. E. (1998). Atlas paleogeograficzny epikontynentalnego permu i mezozoiku w Polsce. Wydaw. Kartograficzne Polskiej Agencji Ekologicznej, Panstw. Inst. Geol., Warszawa.
  29. De Jager, J. (2012). The discovery of the Fat Sand Play (Solling Formation, Triassic), Northern Dutch offshore – A case of serendipity. Netherlands Journal of Geosciences/Geologie en Mijnbouw, 91(4), 609–619. https://doi.org/10.1017/S0016774600000408
    [Google Scholar]
  30. Dèzes, P., Schmid, S. M., & Ziegler, P. A. (2004). Evolution of the European Cenozoic Rift System: Interaction of the Alpine and Pyrenean orogens with their foreland lithosphere. Tectonophysics, 389(1), 1–33. https://doi.org/10.1016/j.tecto.2004.06.011
    [Google Scholar]
  31. Doornenbal, J. C., & Stevenson, A. G. E. (2010). Petroleum geological atlas of the Southern Permian Basin area (342 pp.). Houten, the Netherlands: European Association of Geoscientists & Engineers.
    [Google Scholar]
  32. Duffy, O. B., Gawthorpe, R. L., Docherty, M., & Brocklehurst, S. H. (2013). Mobile evaporite controls on the structural style and evolution of rift basins: Danish Central Graben, North Sea. Basin Research, 25(3), 310–330. https://doi.org/10.1111/bre.12000
    [Google Scholar]
  33. Duin, E. J. T., Doornenbal, J. C., Rijkers, R. H. B., Verbeek, J. W., & Wong, T. E. (2006). Subsurface structure of the Netherlands – Results of recent onshore and offshore mapping. Netherlands Journal of Geosciences/Geologie en Mijnbouw, 85(4), 245–276. https://doi.org/10.1017/S0016774600023064
    [Google Scholar]
  34. Franke, D., & Hoffmann, N. (1999). Das Elbe‐Lineament – Bedeutende Geofraktur oder Phantomgebilde? – Teil 1: Die Referenzgebiete. Zeitschrift fur Geologische Wissenschaften, 27(3/4), 279–318.
    [Google Scholar]
  35. Franzke, H. J., Müller, R., Voigt, T., & von Eynatten, H. (2007). Paleo‐stress paths in the Harz Mountains and surrounding areas (Germany) between the Triassic and the Upper Cretaceous. Zeitschrift für Geologische Wissenschaften, 35(3), 141–156.
    [Google Scholar]
  36. Frisch, U., & Kockel, F. (1999). Quantification of early Cimmerian movements in NW‐Germany. In G. H.Bachmann & I.Lerche (Eds.), Epicontinental Triassic, Zbl. Geol. Paläontol., Teil 1, 7–8, 571–600.
    [Google Scholar]
  37. Frisch, U., & Kockel, F. (2004). Der Bremen‐Knoten im Strukturnetz Nordwest‐Deutschlands: Stratigraphie, Paläogeographie, Strukturgeologie. Berichte, Fachbereich Geowissenschaften, Universität Bremen, 379 pp.
  38. Gast, R. E. (1988). Rifting im Rotliegenden Niedersachsens. Die Geowissenschaften, 6(4), 115–122.
    [Google Scholar]
  39. Gast, R. (1991). The perennial Rotliegend saline lake in Northwest Germany. Geologisches Jahrbuch, A 127, 117–139.
    [Google Scholar]
  40. Gast, R., & Gundlach, T. (2006). Permian strike slip and extensional tectonics in Lower Saxony, Germany. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften, 157(1), 41–55. https://doi.org/10.1127/1860-1804/2006/0157-0041
    [Google Scholar]
  41. Gast, S., Pollok, L., von Goerne, G., & Simon, A. (2014). Structural evolution of the salt domes Blankensee, Sperenberg and Paplitz – Based on a detailed part of the 3D‐Model of Brandenburg. Conference abstract – GeoFrankfurt 2014 Earth System Dynamics.
  42. Ge, H., Jackson, M. P. A., & Vendeville, B. C. (1997). Kinematics and dynamics of salt tectonics driven by progradation. AAPG Bulletin, 81(3), 398–423.
    [Google Scholar]
  43. Geluk, M. (1999). Late Permian (Zechstein) rifting in the Netherlands: Models and implications for petroleum geology. Petroleum Geoscience, 5(2), 189–199. https://doi.org/10.1144/petgeo.5.2.189
    [Google Scholar]
  44. Geluk, M. C. (2005). Stratigraphy and tectonics of Permo‐Triassic basins in the Netherlands and surrounding areas. PhD thesis, Utrecht University, 152 pp.
  45. Geluk, M. C., Brückner‐Röhling, S., & Röhling, H.‐G. (2000). Salt occurrences in the Netherlands and Germany: New insights in the formation of salt basins. In R. M.Geertman (Ed.), 8th World salt symposium. Amsterdam, the Netherlands: Elsevier, 1:125–130.
  46. Glennie, K. W. (1986). Development of NW Europe's Southern Permian gas basin. Geological Society, London, Special Publications, 23(1), 3–22. https://doi.org/10.1144/GSL.SP.1986.023.01.01
    [Google Scholar]
  47. GPDN
    GPDN (2013). Geopotenzial Deutsche Nordsee (GPDN). Bundesanstalt fr Geowissenschaften und Rohstoffe (BGR), Landesamt für Bergbau, Energie und Geologie und Bundesamt für Seeschifffahrt und Hydrographie. Retrieved from https://www.gpdn.de/gpdn/cardomap3.aspx.
  48. Gramann, F., Heunisch, C., Klassen, H., Kockel, F., Dulce, G., Harms, F.‐J., … Thies, D. (1997). Das Niedersächsische Oberjura‐Becken – Ergebnisse interdisziplinärer Zusammenarbeit. Zeitschrift der Deutschen Geologischen Gesellschaft, 148(2), 165–236.
    [Google Scholar]
  49. Griffiths, P. A., Allen, M. R., Craig, J., Fitches, W. R., & Whittington, R. J. (1995). Distinction between fault and salt control of Mesozoic sedimentation on the southern margin of the Mid‐North Sea High. Geological Society, London, Special Publications, 91(1), 145–159. https://doi.org/10.1144/GSL.SP.1995.091.01.08
    [Google Scholar]
  50. Hansen, M. B., Lykke‐Andersen, H., Dehghani, A., Gajewski, D., Hübscher, C., Olesen, M., & Reicherter, K. (2005). The Mesozoic‐Cenozoic structural framework of the Bay of Kiel area, western Baltic Sea. International Journal of Earth Sciences, 94(5–6), 1070–1082. https://doi.org/10.1007/s00531-005-0001-6
    [Google Scholar]
  51. Hansen, M. B., Scheck‐Wenderoth, M., Hübscher, C., Lykke‐Andersen, H., Dehghani, A., Hell, B., & Gajewski, D. (2007). Basin evolution of the northern part of the Northeast German Basin – Insights from a 3D structural model. Tectonophysics, 437(1), 1–16. https://doi.org/10.1016/j.tecto.2007.01.010
    [Google Scholar]
  52. Harding, R., & Huuse, M. (2015). Salt on the move: Multi stage evolution of salt diapirs in the Netherlands North Sea. Marine and Petroleum Geology, 61, 39–55. https://doi.org/10.1016/j.marpetgeo.2014.12.003
    [Google Scholar]
  53. Hübscher, C., Damm, V., Engels, M., Juhlin, C., Krawczyk, C., Malinowski, M., … Seidel, E. (2017). Gravity gliding in the Bay of Mecklenburg? – New seismic data at the North German Basin margin. In EGU General Assembly Conference Abstracts, 19:4428.
  54. Hübscher, C., Hansen, M. B., Trinanes, S. P., Lykke‐Andersen, H., & Gajewski, D. (2010). Structure and evolution of the Northeastern German Basin and its transition onto the Baltic Shield. Marine and Petroleum Geology, 27(4), 923–938. https://doi.org/10.1016/j.marpetgeo.2009.10.017
    [Google Scholar]
  55. Hudec, M. R., & Jackson, M. P. A. (2007). Terra infirma: Understanding salt tectonics. Earth‐Science Reviews, 82(1), 1–28. https://doi.org/10.1016/j.earscirev.2007.01.001
    [Google Scholar]
  56. Hudec, M. R., & Jackson, M. P. A. (2011). The salt mine: A digital atlas of salt tectonics. AAPG Mem. Bureau of Economic Geology, Jackson School of Geosciences, University of Texas at Austin, 305 pp.
  57. Hughes, M., & Davison, I. (1993). Geometry and growth kinematics of salt pillows in the southern North Sea. Tectonophysics, 228(3), 239–254. https://doi.org/10.1016/0040-1951(93)90343-I
    [Google Scholar]
  58. Jackson, M. P. A., & Hudec, M. R. (2017). Salt tectonics: Principles and practice (514 pp.). Cambridge, UK: Cambridge University Press. https://doi.org/10.1017/9781139003988
    [Google Scholar]
  59. Jackson, M. P. A., & Talbot, C. J. (1991). A glossary of salt tectonics. Geological Circular – Bureau of Economic Geology, University of Texas at Austin, 91(4), 1–44.
    [Google Scholar]
  60. Jähne, F., Hoffmann, V., Kley, J., & Dunkl, I. (2008). Temporal and spatial variations of Late Cretaceous‐Paleogene Inversion in the Central European Basin System. In AGU fall meeting abstracts.
  61. Jähne‐Klingberg, F., Bense, F., & Warsitzka, M. (2018). A comparison of the kinematics and structural evolution of major Mesozoic rifts of the southeastern North Sea and Northern Germany. In 80th EAGE annual conference + exhibition, Copenhagen, 4.
  62. Jähne‐Klingberg, F., & Gerling, J. P. (2017). Strukturentwicklung von Buntsandstein‐Gaslagerstätten im Bereich des niedersächsischen Beckens – neue Denkansätze. In DGMK/ÖGEW‐Frühjahrstagung 2017, Fachbereich Aufsuchung und Gewinnung Celle, 10 pp.
  63. Jaritz, W. (1973). Zur Entstehung der Salzstrukturen Nordwestdeutschlands. Geologie Jahrbuch, A 10, 3–77.
    [Google Scholar]
  64. Jubitz, K.‐E. (1964). Führer zu den Exkursionen anlässlich der 11. Jahrestagung der Geologischen Gesellschaft in der Deutschen Demokratischen Republik. Geologischen Gesellschaft in der Deutschen Demokratischen Republik, 11:245 pp.
  65. Kehle, R. O. (1988). The origin of salt structures. In B. C.Schreiber (Ed.), Evaporites and hydrocarbons (pp. 345–404). New York, NY: Columbia University Press.
    [Google Scholar]
  66. Kley, J. (2018). Timing and spatial patterns of Cretaceous and Cenozoic inversion in the Southern Permian Basin. In B.Kilhams , P. A.Kukla , S.Mazur , T.McKie , H. F.Mijnlieff & K.Van Ojik (Eds.), Mesozoic resource potential in the Southern Permian Basin, Geol. Soc. Lond., Spec. Pub., 469, 19–31.
    [Google Scholar]
  67. Kley, J., Franzke, H.‐J., Jähne, F., Krawczyk, C., Lohr, T., Reicherter, K., … the SPP Structural Geology Group (2008). Strain and stress. In R.Littke , U.Bayer , D.Gajewski & S.Nelskamp (Eds.), Dynamics of complex intracontinental basins: The Central European Basin System (pp. 97–124). Berlin, Heidelberg, Germany: Springer‐Verlag.
    [Google Scholar]
  68. Kley, J., & Voigt, T. (2008). Late Cretaceous intraplate thrusting in Central Europe: Effect of Africa‐Iberia‐Europe convergence, not Alpine collision. Geology, 36(11), 839–842. https://doi.org/10.1130/G24930A.1
    [Google Scholar]
  69. Kockel, F. (1991). Die Strukturen im Untergrund des Braunschweiger Landes. Geologie Jahrbuch, A 127, 391–404.
    [Google Scholar]
  70. Kockel, F. (1998). Salt problems in NW‐Germany and the German North Sea Sector. Journal of Seismic Exploration, 7, 219–235.
    [Google Scholar]
  71. Kockel, F. (2002). Rifting processes in NW‐Germany and the German North Sea Sector. Netherlands Journal of Geosciences/Geologie en Mijnbouw, 81, 149–158. https://doi.org/10.1017/S0016774600022381
    [Google Scholar]
  72. Kockel, F. (2003). Inversion structures in Central Europe – Expressions and reasons, an open discussion. Netherlands Journal of Geosciences/Geologie en Mijnbouw, 82(4), 351–366. https://doi.org/10.1017/S0016774600020187
    [Google Scholar]
  73. Kockel, F. E., vonmit Beiträgen von Baldschuhn, R., Best, G., Binot, F., Frisch, U., Gross, U., … Sattler‐Kosinowski, S. (1995). Structural and palaeogeographical development of the German North Sea Sector. Beitr. reg. Geol. Erde, 26:96 pp.
  74. Kockel, F., & Krull, P. (1995). Endlagerung stark wärmeentwickelnder radioaktiver Abfalle in tiefen geologischen Formationen Deutschlands: Untersuchung und Bewertung von Salzformationen. Bundesanstalt für Geowissenschaften und Rohstoffe, 66 pp.
  75. Kossow, D. (2001). Die kinematische Entwicklung des invertierten, intrakontinentalen Nordostdeutschen Beckens. PhD thesis, University of Potsdam, 105 pp.
  76. Kossow, D., & Krawczyk, C. M. (2002). Structure and quantification of processes controlling the evolution of the inverted NE‐German Basin. Marine and Petroleum Geology, 19(5), 601–618. https://doi.org/10.1016/S0264-8172(02)00032-6
    [Google Scholar]
  77. Kossow, D., Krawczyk, C., McCann, T., Strecker, M., & Negendank, J. F. (2000). Style and evolution of salt pillows and related structures in the northern part of the Northeast German Basin. International Journal of Earth Sciences, 89(3), 652–664. https://doi.org/10.1007/s005310000116
    [Google Scholar]
  78. Köthe, A., Hoffmann, N., & Krull, P. (2007). Standortbeschreibung Gorleben – Teil 2 Die Geologie des Deck‐ und Nebengebirges des Salzstocks Gorleben. Geologie Jahrbuch, C 72, 5–201.
    [Google Scholar]
  79. Krauss, M., & Mayer, P. (2004). Das Vorpommern‐Störungssystem und seine regionale Einordnung zur Transeuropäischen Störung. Zeitschrift fur Geologische Wissenschaften, 32(2/4), 227–246.
    [Google Scholar]
  80. Krzywiec, P. (2002). Mid‐Polish Trough inversion – Seismic examples, main mechanisms and its relationship to the Alpine – Carpathian collision. Continental collision and the tectonosedimentary evolution of forelands: European Geophysical Society Special Publication, 1:151–165.
  81. Krzywiec, P. (2004a). Basement vs. Salt Tectonics and Salt‐Sediment Interaction – Case Study of the Mesozoic Evolution of the Intracontinental Mid‐Polish Trough. In GCSSEPM Foundation 24th Annual Research Conference: SaltSediment Interactions and Hydrocarbon Prospectivity: Concepts, Applications and Case Studies for the 21st Century, pages 616–643.
  82. Krzywiec, P. (2004b). Triassic evolution of the K lodawa salt structure: Basement‐controlled salt tectonics within the Mid‐Polish Trough (Central Poland). Geological Quarterly, 48(2), 123–134.
    [Google Scholar]
  83. Krzywiec, P. (2006). Triassic‐Jurassic evolution of the Pomeranian segment of the Mid‐Polish Trough – basement tectonics and subsidence patterns. Geological Quarterly, 50(1), 139–150.
    [Google Scholar]
  84. Krzywiec, P. (2012). Mesozoic and Cenozoic evolution of salt structures within the Polish basin: An overview. Geological Society, London, Special Publications, 363(1), 381–394. https://doi.org/10.1144/SP363.17
    [Google Scholar]
  85. Krzywiec, P., & Stachowska, A. (2016). Late Cretaceous inversion of the NW segment of the Mid‐Polish Trough – how marginal troughs were formed, and does it matter at all?Zeitschrift der Deutschen Gesellschaft für Geowissenschaften, 167(2–3), 107–119. https://doi.org/10.1127/zdgg/2016/0068
    [Google Scholar]
  86. Kukla, P. A., Urai, J. L., & Mohr, M. (2008). Dynamics of salt structures. In R.Littke , U.Bayer , D.Gajewski , & S.Nelskamp (Eds.), Dynamics of complex intracontinental basins: The Central European Basin System (pp. 291–306). Berlin, Heidelberg, Germany: Springer‐Verlag.
    [Google Scholar]
  87. Last, N. C. (1988). Deformation of a sedimentary overburden on a slowly creeping substratum. In G.Swoboda (Ed.), Numerical methods in geomechanics (pp. 577–585). Balkema: Balkema Rotterdam.
    [Google Scholar]
  88. Lohr, T., Krawczyk, C. M., Tanner, D. C., Samiee, R., Endres, H., Oncken, O., … Kukla, P. A. (2007). Strain partitioning due to salt: Insights from interpretation of a 3D seismic data set in the NW German Basin. Basin Research, 19(4), 579–597. https://doi.org/10.1111/j.1365-2117.2007.00338.x
    [Google Scholar]
  89. Maystrenko, Y. P., Bayer, U., Brink, H.‐J., & Littke, R. (2008). The Central European Basin System – An overview. In R.Littke , U.Bayer , D.Gajewski , & S.Nelskamp (Eds.), Dynamics of Complex Intracontinental Basins: The Central European Basin System (pp. 17–34). Berlin, Heidelberg, Germany: Springer‐Verlag.
    [Google Scholar]
  90. Maystrenko, Y. P., Bayer, U., & Scheck‐Wenderoth, M. (2005). Structure and evolution of the Glueckstadt Graben due to salt movements. International Journal of Earth Sciences, 94(5–6), 799–814. https://doi.org/10.1007/s00531-005-0003-4
    [Google Scholar]
  91. Maystrenko, Y. P., Bayer, U., & Scheck‐Wenderoth, M. (2006). 3D reconstruction of salt movements within the deepest post‐Permian structure of the Central European Basin System – the Glueckstadt Graben. Netherlands Journal of Geosciences/Geologie en Mijnbouw, 85(3), 181–196. https://doi.org/10.1017/S0016774600021466
    [Google Scholar]
  92. Maystrenko, Y. P., Bayer, U., & Scheck‐Wenderoth, M. (2013). Salt as a 3D element in structural modeling – Example from the Central European Basin System. Tectonophysics, 591, 62–82. https://doi.org/10.1016/j.tecto.2012.06.030
    [Google Scholar]
  93. Mazur, S., Scheck‐Wenderoth, M., & Krzywiec, P. (2005). Different modes of the Late Cretaceous – Early Tertiary inversion in the North German and Polish basins. International Journal of Earth Sciences, 94(5–6), 782–798. https://doi.org/10.1007/s00531-005-0016-z
    [Google Scholar]
  94. McCann, T. E. (2008). The geology of Central Europe, volume 2: Mesozoic and Cenozoic (1493 pp). London, UK: Geological Society. https://doi.org/10.1144/CEV2P
    [Google Scholar]
  95. McKie, T. (2017). Paleogeographic evolution of latest Permian and Triassic salt basins in Northwest Europe. In J. I.Soto , J. F.Flinch & G.Tari (Eds.), Permo‐triassic salt provinces of Europe, North Africa and the Atlantic Margins (1st ed., pp. 159–173). Amsterdam, Netherlands: Elsevier. https://doi.org/10.1016/B978-0-12-809417-4.00008-2
    [Google Scholar]
  96. Meinhold, R., & Reinhardt, H. G. (1967). Halokinese im nordostdeutschen Tieand. Ber. dt. Ges. geol. Wiss., A Geol. Paläont, 12:329–353.
  97. Mohr, M., Kukla, P. A., Urai, J., & Bresser, G. (2005). Multiphase salt tectonic evolution in NW Germany: Seismic interpretation and retro‐deformation. International Journal of Earth Sciences, 94(5–6), 917–940. https://doi.org/10.1007/s00531-005-0039-5
    [Google Scholar]
  98. Müller, C., Jähne‐Klingberg, F., von Goerne, G., Binot, F., & Röhling, H.‐G. (2016). Vom Geotektonischen Atlas (“Kockel‐Atlas”) zu einem 3D‐Gesamtmodell des Norddeutschen Beckens: Basisinformationen zum tieferen Untergrund von Norddeutschland. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften (German Journal of Geology), 167(2–3), 65–106. https://doi.org/10.1127/zdgg/2016/0072
    [Google Scholar]
  99. Navabpour, P., Malz, A., Kley, J., Siegburg, M., Kasch, N., & Ustaszewski, K. (2017). Intraplate brittle deformation and states of paleostress constrained by fault kinematics in the central German platform. Tectonophysics, 694, 146–163. https://doi.org/10.1016/j.tecto.2016.11.033
    [Google Scholar]
  100. NIBIS®Kartenserver
    NIBIS®Kartenserver (2016). Niederschsischen Bodeninformationssystems. Landesamt für Bergbau, Energie und Geologie. Retrieved from http://nibis.lbeg.de/cardomap3/.
  101. nlog
    nlog . The Netherlands Oil and Gas Portal – Data and Information on the Dutch Subsurface. Netherlands Organisation for Applied Scientific Research (TNO), Utrecht, pp. 104. Retrieved from https://www.nlog.nl/.
  102. Noack, V., Cherubini, Y., Scheck‐Wenderoth, M., Lewerenz, B., Höding, T., Simon, A., & Moeck, I. (2010). Assessment of the present‐day thermal field (NE German Basin) – Inferences from 3D modelling. Chemie der Erde‐Geochemistry, 70, 47–62. https://doi.org/10.1016/j.chemer.2010.05.008
    [Google Scholar]
  103. Otto, V. (2003). Inversion‐related features along the southeastern margin of the North German Basin (Elbe Fault System). Tectonophysics, 373(1), 107–123. https://doi.org/10.1016/S0040-1951(03)00287-7
    [Google Scholar]
  104. Patzelt, G. (2003). Nördliches Harzvorland (Vol. 50, 182 pp.). Berlin/Stuttgart, Germany: Gebrüder Bornraeger, Sammlung Geologischer Führer.
    [Google Scholar]
  105. Payne, M., Adam, J., Scarselli, N., & Morse, S. (2016). Evolution of Salt Structures and Post‐Permian Depocenters in the Broad Fourteens Basin, Southern North Sea: Implications for Triassic‐Jurassic Reservoir Potential. In Geol. Soc. London Conference: Mesozoic Resource Potential in the Southern Permian Basin, pages 77–78.
  106. Plein, E. (1978). Rotliegendablagerungen im Nordwestdeutschen Becken. Zeitschrift der Deutschen Geologischen Gesellschaft, 129, 71–97.
    [Google Scholar]
  107. Plein, E. H. (1995). Norddeutsches Rotliegend‐Becken – Rotliegend‐Monographie, Teils. Cour. Forschungsinst. Senckenb., 183:193 pp.
  108. Rank‐Friend, M., & Elders, C. F. (2004). The evolution and growth of central graben salt structures, Salt Dome Province, Danish North sea. Geological Society, London, Memoirs, 29(1), 149–164. https://doi.org/10.1144/GSL.MEM.2004.029.01.15
    [Google Scholar]
  109. Rauche, H., & Franzke, H. J. (1990). Stress field evolution at the northern part of the South German Block on the territory of the GDR. Gerlands Beiträge zur Geophysik, 99, 441–461.
    [Google Scholar]
  110. Reinhardt, H.‐G. (1993). Structure of Northeast Germany: Regional depth and thickness maps of Permian to Tertiary intervals compiled from seismic reection data. In A. M.Spencer (Ed.), Generation, accumulation and production of Europe's hydrocarbons III: Special publication of the European Association of Petroleum Geoscientists No. 3 (pp. 155–165). Berlin, Heidelberg, Germany: Springer‐Verlag. https://doi.org/10.1007/978-3-642-77859-9
    [Google Scholar]
  111. Reinhold, K., & Hammer, J. (2016). Steinsalzlager in den salinaren Formationen Deutschlands. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften, 167(2–3), 167–190. https://doi.org/10.1127/zdgg/2016/0067
    [Google Scholar]
  112. Reinhold, K., Krull, P., & Kockel, F. (2008). Salzstrukturen Norddeutschlands, Geologische Karte 1:500 000. Berlin/Hannover, Germany: Bundesanstalt für Geowissenschaften und Rohstoffe.
    [Google Scholar]
  113. Remmelts, G. (1995). Fault‐related salt tectonics in the southern North Sea, the Netherlands. In M. P. A.Jackson , D. G.Roberts & S.Snelson (Eds.), Salt tectonics: A global perspective, AAPG Special Volumes, 65:261–272.
  114. Richter‐Bernburg, G. (1995a). Über salinare sedimentation. Zeitschrift der Deutschen Geologischen Gesellschaft, 105, 593–645.
    [Google Scholar]
  115. Richter‐Bernburg, G. (1995b). Stratigraphische Gliederung des deutschen Zechsteins. Zeitschrift der Deutschen Geologischen Gesellschaft, 105, 876–899.
    [Google Scholar]
  116. Riedel, L. (1944). Einige Fragen hinsichtlich des Alters und Aufdringens der Salzstöcke in Nordwestdeutschland, besonders auf der Pompeckj'schen Schwelle. Geologisches Jahrbuch, 63, 39–81.
    [Google Scholar]
  117. Röhling, H.‐G. (1991). A lithostratigraphic subdivision of the Lower Triassic in the northwest German lowlands and the German sector of the North Sea, based on gamma‐ray and sonic logs.‐The perennial Rotliegend saline lake in northwest Germany. Geologie Jahrbuch, A 119, 3–24.
    [Google Scholar]
  118. Röhling, H.‐G. (2013). Der Buntsandstein im Norddeutschen Becken – Regionale Besonderheiten. In Deutsche Stratigraphische Kommission (Eds.; Koordination und Redaktion: J. Lepper & H.‐G. Röhling fr die Subkommission Perm‐Trias):, Stratigraphie von Deutschland XI. Buntsandstein. Schriftenr. dt. Ges. Geowiss., 69:269–384.
  119. Sannemann, D. (1968). Salt‐stock families in Northwestern Germany. AAPG Memoir, 8, 261–270.
    [Google Scholar]
  120. Scheck, M., & Bayer, U. (1999). Evolution of the Northeast German Basin – Inferences from a 3D structural model and subsidence analysis. Tectonophysics, 313(1), 145–169. https://doi.org/10.1016/S0040-1951(99)00194-8
    [Google Scholar]
  121. Scheck, M., Bayer, U., & Lewerenz, B. (2003a). Salt movements in the Northeast German Basin and its relation to major post‐Permian tectonic phases – Results from 3D structural modelling, backstripping and reflection seismic data. Tectonophysics, 361(3), 277–299. https://doi.org/10.1016/S0040-1951(02)00650-9
    [Google Scholar]
  122. Scheck, M., Bayer, U., & Lewerenz, B. (2003b). Salt redistribution during extension and inversion inferred from 3D backstripping. Tectonophysics, 373(1), 55–73. https://doi.org/10.1016/S0040-1951(03)00283-X
    [Google Scholar]
  123. Scheck, M., Bayer, U., Otto, V., Lamarche, J., Banka, D., & Pharaoh, T. (2002). The Elbe Fault System in North Central Europe – A basement controlled zone of crustal weakness. Tectonophysics, 360(1), 281–299. https://doi.org/10.1016/S0040-1951(02)00357-8
    [Google Scholar]
  124. Scheck‐Wenderoth, M., Krzywiec, P., Zühlke, R., Maystrenko, Y., & Froitzheim, N. (2008). Permian to Cretaceous tectonics. In T.McCann (Ed.), The geology of Central Europe (pp. 999–1030). London, UK: The Geological Society.
    [Google Scholar]
  125. Scheck‐Wenderoth, M., Maystrenko, Y., Hübscher, C., Hansen, M., & Mazur, S. (2008). Dynamics of salt basin. In R.Littke , U.Bayer , D.Gajewski & S.Nelskamp (Eds.), Dynamics of complex intracontinental basins: The Central European Basin System (pp. 307–321). Berlin, Heidelberg, Germany: Springer‐Verlag.
    [Google Scholar]
  126. Seni, S. J., & Jackson, M. P. A. (1983). Evolution of salt structures, east Texas diapir province, part 1: Sedimentary record of halokinesis. AAPG Bulletin, 67(8), 1219–1244.
    [Google Scholar]
  127. Sharp, R., Adam, J., Scarselli, N., & Morse, S. (2016). Thick vs. thin‐skinned deformation of the Sole Pit High (UK Southern North Sea Basin) and its impact on the evolution of supra‐salt prospectivity. In Geol. Soc. London Conference: Mesozoic resource potential in the Southern Permian Basin, 4 pp.
  128. Sørensen, K. (1998). The salt pillow to diapir transition: Evidence from unroofing unconformities in the Norwegian‐Danish Basin. Petroleum Geoscience, 4(3), 193–202. https://doi.org/10.1144/petgeo.4.3.193
    [Google Scholar]
  129. Stemmerik, L., Ineson, J. R., & Mitchell, J. G. (2000). Stratigraphy of the Rotliegend Group in the Danish part of the northern Permian Basin, North Sea. Journal of the Geological Society, 157(6), 1127–1136. https://doi.org/10.1144/jgs.157.6.1127
    [Google Scholar]
  130. Stewart, S. A. (1996). Tertiary extensional fault systems on the western margin of the North Sea Basin. Petroleum Geoscience, 2(2), 167–176. https://doi.org/10.1144/petgeo.2.2.167
    [Google Scholar]
  131. Stewart, S. A. (2007). Salt tectonics in the North Sea Basin: A structural style template for seismic interpreters. Geological Society, London, Special Publications, 272, 361–396. https://doi.org/10.1144/GSL.SP.2007.272.01.19
    [Google Scholar]
  132. Stewart, S. A., & Coward, M. P. (1995). Synthesis of salt tectonics in the southern North Sea, UK. Marine and Petroleum Geology, 12(5), 457–475. https://doi.org/10.1016/0264-8172(95)91502-G
    [Google Scholar]
  133. Stewart, S. A., & Coward, M. P. (1996). Genetic interpretation and mapping of salt structures. First Break, 14(4), 135–141.
    [Google Scholar]
  134. Stewart, S. A., Harvey, M. J., Otto, S. C., & Weston, P. J. (1996). Inuence of salt on fault geometry: Examples from the UK salt basins. Geological Society, London, Special Publications, 100(1), 175–202. https://doi.org/10.1144/GSL.SP.1996.100.01.12
    [Google Scholar]
  135. Stollhofen, H., Bachmann, G. H., Barnasch, J., Bayer, U., Beutler, G., Franz, M., … Radies, D. (2008). Upper Rotliegend to early cretaceous basin development. In R.Littke , U.Bayer , D.Gajewski , & S.Nelskamp (Eds.), Dynamics of complex intracontinental basins: The Central European Basin System (pp. 181–207). Berlin, Heidelberg, Germany: Springer‐Verlag.
    [Google Scholar]
  136. Strozyk, F., Reuning, L., Scheck‐Wenderoth, M., & Tanner, D. C. (2017). The tectonic history of the Zechstein Basin in the Netherlands and Germany. In J. I.Soto , J. F.Flinch & G.Tari (Eds.), Permo‐triassic salt provinces of Europe, North Africa and the Atlantic margins (1st ed., pp. 221–241). Amsterdam, Netherlands: Elsevier. https://doi.org/10.1016/B978-0-12-809417-4.00011-2
    [Google Scholar]
  137. Strozyk, F., Urai, J. L., van Gent, H., de Keijzer, M., & Kukla, P. A. (2014). Regional variations in the structure of the Permian Zechstein 3 intrasalt stringer in the northern Netherlands: 3D seismic interpretation and implications for salt tectonic evolution. Interpretation, 2(4), SM101–SM117. https://doi.org/10.1190/INT-2014-0037.1
    [Google Scholar]
  138. Strunck, P., Gaupp, R., & Stefan, M. (1998). Early Triassic movement of Upper Permian (Zechstein) salt in Northwest Germany. In G. H.Bachmann & I.Lerche (Eds.), Epicontinental Triassic (Vol. 1, pp. 679–699). Stuttgart, Germany: E. Schweizerbart'sche Verlagsbuchhandlung.
    [Google Scholar]
  139. Talbot, C. J. (1995). Molding of salt diapirs by stiff overburden. In D. G.Jackson , M. P. A.Roberts & S.Snelson (Eds.), Salt tectonics: A global perspective, AAPG Mem., 65:61–75.
  140. Tanner, D. C., Musmann, P., Wawerzinek, B., Buness, H., Krawczyk, C. M., & Thomas, R. (2015). Salt tectonics of the eastern border of the Leinetal Graben, Lower Saxony, Germany, as deduced from seismic reflection data. Interpretation, 3(3), T169–T181. https://doi.org/10.1190/INT-2014-0221.1
    [Google Scholar]
  141. Ten Veen, J. H., Van Gessel, S. F., & Den Dulk, M. (2012). Thin‐and thick‐skinned salt tectonics in the Netherlands; a quantitative approach. Netherlands Journal of Geosciences/Geologie en Mijnbouw, 91(04), 447–464. https://doi.org/10.1017/S0016774600000330
    [Google Scholar]
  142. Thieme, B., & Rockenbauch, K. (2001). Flosstektonik in der Trias der deutschen südlichen Nordsee. Erdöl, Erdgas, Kohle, 117(12), 568–573.
    [Google Scholar]
  143. TNO
    TNO (2009). DINOloket (Internet Portal for Geo‐Information). Netherlands Organisation for Applied Scientific Research (TNO). Retieved from https://www.dinoloket.nl/.
  144. Trusheim, F. (1960). Mechanism of salt migration in northern Germany. AAPG Bulletin, 44(9), 1519–1540.
    [Google Scholar]
  145. Trusheim, F. (1971). Zur Bildung der Salzlager im Rotliegenden und Mesozoikum Mitteleuropas. Geol. Jahrb., 112:51 pp.
  146. Underhill, J. R., & Partington, M. A. (1993). Jurassic thermal doming and deation in the North Sea: Implications of the sequence stratigraphic evidence. In Geological Society, London, Petroleum Geology Conference series, 4(1):337–345.
  147. Van Hoorn, B. (1987). Structural evolution, timing and tectonic style of the Sole Pit inversion. Tectonophysics, 137(1), 239–284. https://doi.org/10.1016/0040-1951(87)90322-2
    [Google Scholar]
  148. Van Winden, M. E. (2015). Salt tectonics in the northern Dutch offshore – A study into Zechstein halokinesis in the Dutch Central Graben and Step Graben. Master's thesis, Utrecht University, 111 pp.
  149. Van Winden, M., deJager, J., Jaarsma, B., & Bouroullec, R. (2018). New insights into salt tectonics in the northern Dutch offshore: A framework for hydrocarbon exploration. In B.Kilhams , P. A.Kukla , S.Mazur , T.McKie , H. F.Mijnlieff & K.Van Ojik (Eds.), Mesozoic resource potential in the Southern Permian Basin, Geol. Soc. Lond., Spec. Pub., 469, 99–117.
    [Google Scholar]
  150. Vejbæk, O. V. (1990). The Horn Graben, and its relationship to the Oslo Graben and the Danish Basin. Tectonophysics, 178(1), 29–49. https://doi.org/10.1016/0040-1951(90)90458-K
    [Google Scholar]
  151. Wagner, R., Leszczyński, K., Pokorski, J., & Gumulak, K. (2002). Palaeotectonic cross‐sections through the Mid‐Polish Trough. Geological Quarterly, 46(3), 293–306.
    [Google Scholar]
  152. Warren, J. K. (2008). Salt as sediment in the Central European Basin system as seen from a deep time perspective. In R.Littke , U.Bayer , D.Gajewski , & S.Nelskamp (Eds.), Dynamics of complex intracontinental basins: The Central European Basin System (pp. 249–276). Berlin, Heidelberg, Germany: Springer‐Verlag.
    [Google Scholar]
  153. Warsitzka, M., Kley, J., Jähne‐Klingberg, F., & Kukowski, N. (2017). Dynamics of prolonged salt movement in the Glückstadt Graben (NW Germany) driven by tectonic and sedimentary processes. International Journal of Earth Sciences, 106(1), 131–155. https://doi.org/10.1007/s00531-016-1306-3
    [Google Scholar]
  154. Warsitzka, M., Kley, J., & Kukowski, N. (2013). Salt diapirism driven by differential loading – Some insights from analogue modelling. Tectonophysics, 591, 83–97. https://doi.org/10.1016/j.tecto.2011.11.018
    [Google Scholar]
  155. Widera, M., Ćwikliński, W., & Karman, R. (2008). Cenozoic tectonic evolution of the Poznań‐Oleśnica Fault Zone, central‐western Poland. Acta Geologica Polonica, 58(4), 455–471.
    [Google Scholar]
  156. Withjack, M. O., & Callaway, S. (2000). Active normal faulting beneath a salt layer: An experimental study of deformation patterns in the cover sequence. AAPG Bulletin, 84(5), 627–651.
    [Google Scholar]
  157. Witte, J., Ioughlissen, A., Rott, C., & Damte, A. (2013). Incipient salt‐rafting along the Northern Margin of the Zechtein Basin – A Case Study from Northeastern Germany. In 75th EAGE conference & exhibition incorporating SPE EUROPEC 2013, 5 pp.
  158. Wong, T. E., Batjes, D. A. J., de Jager, J., & van Wetenschappen, K. N. A. (2007). Geology of the Netherlands (p. 354). Amsterdam, the Netherlands: Royal Netherlands Academy of Arts and Sciences.
    [Google Scholar]
  159. Ziegler, P. A. (1987). Late Cretaceous and Cenozoic intra‐plate compressional deformations in the Alpine foreland – A geodynamic model. Tectonophysics, 137(1–4), 389–420. https://doi.org/10.1016/0040-1951(87)90330-1
    [Google Scholar]
  160. Ziegler, P. A. (1990). Geological atlas of western and Central Europe, 2nd and completely revised edition (256 pp). The Hague, Amsterdam, the Netherlands: Shell Internationale Petroleum Maatschappij, B.V.
    [Google Scholar]
  161. Ziegler, P. A., & van Hoorn, B. (1989). Evolution of North Sea rift system: Chapter 31: North Sea and Barents Shelf. In A. J.Tankard & H. R.Balkwill (Eds.), Extensional tectonics and stratigraphy of the North Atlantic margins, AAPG Special Volumes, M 46:471–500.
  162. Zirngast, M. (1996). The development of the Gorleben salt dome (northwest Germany) based on quantitative analysis of peripheral sinks. Geological Society London Special Publications, 100(1), 203–226. https://doi.org/10.1144/GSL.SP.1996.100.01.13
    [Google Scholar]
  163. Zöllner, H., Reicherter, K., & Schikowsky, P. (2008). High‐resolution seismic analysis of the coastal Mecklenburg Bay (North German Basin): The pre‐Alpine evolution. International Journal for Earth Science, 97(5), 1013–1027. https://doi.org/10.1007/s00531-007-0277-9
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12323
Loading
/content/journals/10.1111/bre.12323
Loading

Data & Media loading...

Supplements

 

PDF

 

ARCHIVE
  • Article Type: Research Article
Keyword(s): basin dynamics; diapirism; salt tectonics; Southern Permian Basin

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error