1887
Volume 31, Issue 2
  • E-ISSN: 1365-2117

Abstract

Abstract

Assessing the thermal evolution of sedimentary basins over time is a major aspect of modern integrated basin analysis. While the behavior of clay minerals and organic matter with increasing burial is well documented in different geological and thermal settings, these methods are often limited by the temperature ranges over which they can be precisely applied and by the available material. Here, we explore the emergent Δ clumped isotope geospeedometry (based on the diffusional redistribution of carbon and oxygen isotopes in the carbonate lattice at elevated temperatures) to refine time‐temperature paths of carbonate rocks during their burial evolution. This study provides a reconstruction of the thermal and exhumation history of the Upper Cretaceous thrust belt series in the western subalpine massifs (Bauges and Bornes, French Alps) by a new approach combining for the first time available data from three independent geothermometers. The investigated area presents two zones affected by contrasting thermal histories. The most external zone has undergone a relatively mild thermal history ( < 70°C) and does not record any significant clay mineral diagenetic transformation. By contrast, the internal zone has experienced tectonic burial (prealpine nappes) in response to thrusting, resulting in overheating ( > 160–180°C) that induced widespread clay mineral diagenetic transformations (progressive illitization from R0 to R1 and R3 illite‐smectite mixed‐layers), organic matter maturation (oil window) and Δ thermal resetting with apparent equilibrium temperatures above 160°C. The three employed geothermal indicators conjointly reveal that the investigated Upper Cretaceous rocks have suffered a wide range of burial temperatures since their deposition, with a thermal maximum locally up to 160–180°C. High temperatures are associated with the tectonic emplacement of up to 4 km of prealpine nappes in the northern part of the studied area. Finally, a forward thermal modeling using Δ, vitrinite reflectance and clay mineral data, is attempted to precisely refine the burial and exhumation histories of this area.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12324
2018-12-06
2024-03-29
Loading full text...

Full text loading...

References

  1. Aldega, L., Corrado, S., Grasso, M., & Maniscalco, R. (2005). Correlation of inorganic and organic thermal indicators in the Eastern Sicily fold‐and‐thrust belt. Atti Ticinensi Di Scienze Della Terra, 10, 61–65.
    [Google Scholar]
  2. Bellahsen, N., Mouthereau, F., Boutoux, A., Bellanger, M., Lacombe, O., Jolivet, L., & Rolland, Y. (2014). Collision kinematics in the western external Alps. Tectonics, 33, 1055–1088. https://doi.org/10.1002/2013TC003453
    [Google Scholar]
  3. Bennett, C. E., Williams, M., Leng, M. J., Lee, M. R., Bonifacie, M., Calmels, D., … Vandenbroucke, T. R. A. (2018). Oxygen isotope analysis of the eyes of pelagic trilobites: Testing the application of sea temperature proxies for the Ordovician. Gondwana Research, 57, 157–169. https://doi.org/10.1016/j.gr.2018.01.006
    [Google Scholar]
  4. Bergman, S. C., Huntington, K. W., & Crider, J. G. (2013). Tracing paleofluid sources using clumped isotope thermometry of diagenetic cements along the moab fault, Utah. American Journal of Science, 313, 490–515. https://doi.org/10.2475/05.2013.03
    [Google Scholar]
  5. Bonifacie, M., Calmels, D., & Eiler, J. M. (2013). Clumped isotope thermometry of marbles as an indicator of the closure temperatures of calcite and dolomite with respect to solid‐state reordering of C‐O bonds . Goldschmidt Conference (Florence, Italy).
  6. Bonifacie, M., Calmels, D., Eiler, J. M., Horita, J., Chaduteau, C., Vasconcelos, C., … Bourrand, J. J. (2017). Calibration of the dolomite clumped isotope thermometer from 25 to 350°C, and implications for a universal calibration for all (Ca, Mg, Fe)CO3 carbonates. Geochimica et Cosmochimica Acta, 200, 255–279. https://doi.org/10.1016/j.gca.2016.11.028
    [Google Scholar]
  7. Brand, W. A., Assonov, S. S., & Coplen, T. B. (2010). Correction for the 17O interference in δ13C measurements when analyzing CO2 with stable isotope mass spectrometry. Pure and Applied Chemistry, 82, 1719–1733.
    [Google Scholar]
  8. Bristow, T. F., Bonifacie, M., Derkowski, A., Eiler, J. M., & Grotzinger, J. P. (2011). A hydrothermal origin for isotopically anomalous cap dolostone cements from south China. Nature, 474, 68–71. https://doi.org/10.1038/nature10096
    [Google Scholar]
  9. Budd, D. A., Frost, E. L., Huntington, K. W., & Allwardt, P. F. (2013). Syndepositional deformation features in high‐relief carbonate platforms: Long‐lived conduits for diagenetic fluids. Journal of Sedimentary Research, 83, 12–36. https://doi.org/10.2110/jsr.2013.3
    [Google Scholar]
  10. Butler, R. W. H. (1991). Hydrocarbon maturation, migration and tectonic loading in the western Alpine foreland thrust belt. In W. A.England , & A. J.Fleet (Eds.), Petroleum migration (59, pp. 227–244). London, UK: Geological Society Special Publication.
    [Google Scholar]
  11. Cavailhes, T., Sizun, J.‐P., Labaume, P., Chauvet, A., Buatier, M., Soliva, R., … Gout, C. (2013). Influence of fault rock foliation on fault zone permeability: The case of deeply buried arkosic sandstones (Grès d’Annot, SE France). AAPG Bulletin, 97, 1521–1543.
    [Google Scholar]
  12. Chenot, E., Deconinck, J. F., Pucéat, E., Pellenard, P., Guiraud, M., Jaubert, M., … Stemmerik, L. (2018). Continental weathering as a driver of late Cretaceous cooling: New insights from clay mineralogy of Campanian sediments from the southern Tethyan margin to the boreal realm. Global and Planetary Change, 162, 292–312.
    [Google Scholar]
  13. Dale, A., John, C. M., Mozley, P. S., Smalley, P. C., & Muggeridge, A. H. (2014). Time‐capsule concretions: Unlocking burial diagenetic processes in the Mancos Shale using carbonate clumped isotopes. Earth and Planetary Science Letters, 394, 30–37. https://doi.org/10.1016/j.epsl.2014.03.004
    [Google Scholar]
  14. Dassie, E., Genty, D., Noret, A., Mangenot, X., Massault, M., Lebas, N., … Michelot, J. L. (2018). A newly designed analytical line to examine the reproducibility of fluid inclusion isotopic compositions in small carbonate samples. G3, Geochemistry, Geophysics, Geosystems, 19, 1–16.
    [Google Scholar]
  15. Deconinck, J. F., Amédro, F., Baudin, F., Godet, A., Pellenard, P., Robaszynski, F., & Zimmerlin, I. (2005). Late Cretaceous palaeoenvironments expressed by the clay mineralogy of Cenomanian to Campanian chalks from the East of the Paris Basin (Craie 700 program). Cretaceous Research, 26, 171–179.
    [Google Scholar]
  16. Deconinck, J. F., Beaudoin, B., Chamley, H., Joseph, P., & Raoult, J. F. (1985). Contrôles tectonique, eustatique et climatique de la sédimentation argileuse du domaine subalpin français au Malm‐Crétacé. Revue De Géographie Physique Et De Géologie Dynamique, 26, 311–320.
    [Google Scholar]
  17. Deconinck, J. F., & Chamley, H. (1983). Héritage et diagenèse des minéraux argileux dans les alternances marno‐calcaires du Crétacé inférieur du domaine subalpin. Comptes Rendus De L'académie Des Sciences, Paris, 297, 589–594.
    [Google Scholar]
  18. Deconinck, J. F., & Debrabant, P. (1985). Diagenèse des argiles dans le domaine subalpin: rôle respectif de la lithologie, de l’enfouissement et de la surcharge tectonique. Revue De Géologie Dynamique Et De Géographie Physique, 26(5), 321–330.
    [Google Scholar]
  19. Delamette, F., Charollais, J., Decrouez, D., & Caron, M.. (1997). Les grès verts helvétiques (Aptien moyen‐Albien supérieur) de Haute‐Savoie, Valais et Vaud (23, p. 400). Geneva, Switzerland: Publication du département de Géologie‐Paléontologie de l'Université de Genève.
    [Google Scholar]
  20. Dellisanti, F., Pini, G. A., & Baudin, F. (2010). Use of Tmax as a thermal maturity indicator in orogenic successions and comparison with clay mineral evolution. Clay Minerals, 45, 115–130.
    [Google Scholar]
  21. Dennis, K. J., Affek, H. P., Passey, B. H., Schrag, D. P., & Eiler, J. M. (2011). Defining an absolute reference frame for “clumped” isotope studies of CO2 . Geochimica et Cosmochimica Acta, 75, 7117–7131. https://doi.org/10.1016/j.gca.2011.09.025
    [Google Scholar]
  22. Dennis, K. J., & Schrag, D. P. (2010). Clumped isotope thermometry of carbonatites as an indicator of diagenetic alteration. Geochimica et Cosmochimica Acta, 74, 4110–4122. https://doi.org/10.1016/j.gca.2010.04.005
    [Google Scholar]
  23. Deville de Perière, M., Durlet, C., Vennin, E., Lambert, L., Bourillot, R., Caline, B., & Poli, E. (2011). Morphometry of micrite particles in cretaceous microporous limestones of the Middle East: Influence on reservoir properties. Marine and Petroleum Geology, 28, 1727–1750. https://doi.org/10.1016/j.marpetgeo.2011.05.002
    [Google Scholar]
  24. Deville, E., & Sassi, W. (2006). Contrasting thermal evolution of thrust systems: An analytical and modeling approach in the front of the western Alps. American Association of Petroleum Geologists Bulletin, 90, 887–907. https://doi.org/10.1306/01090605046
    [Google Scholar]
  25. Espitalié, J., Deroo, G., & Marquis, F. (1985). La pyrolyse Rock‐Eval et ses applications. Revue De L'institut Francais Du Petrole, 40, 563e579.
    [Google Scholar]
  26. Fay‐Gomord, O., Allanic, C., Wouters, S., Honlet, R., Champenois, F., Bonifacie, M., … Swennen, R. (2018). Understanding fluid‐flow during tectonic reactivation: An example from the flamborough head chalk outcrop (UK) Geofluids . Volume 2018, Article ID 9352143, 17 pages.
  27. Fernandez, A., Tang, J., & Rosenheim, B. E. (2014). Siderite clumped isotope themometry: A new paleoclimate proxy for humid continental environments. Geochimica et Cosmochimica Acta, 126, 411–421.
    [Google Scholar]
  28. Ferry, S., Cotillon, P., & Rio, M. (1983). Diagenèse croissante des argiles dans les niveaux isochrones de l’alternance calcaire‐marne valanginienne du basin vocontien. Zonation géographique. Comptes Rendus De L'académie Des Sciences, Paris, 297, 51–56.
    [Google Scholar]
  29. Ghosh, P., Adkins, J., Affek, H., Balta, B., Guo, W., Schauble, E. A., … Eiler, J. M. (2006). 13C–18O bonds in carbonate minerals: A new kind of paleothermometer. Geochimica et Cosmochimica Acta, 70, 1439–1456.
    [Google Scholar]
  30. Gorin, G., Gulacar, F., & Cornioley, Y. (1989). Organic geochemistry, maturity, palynofacies and palaeoenvironment of upper Kimmeridgian and lower Tertiary organic‐rich samples in the southern Jura (Ain, France) and Subalpine massifs (Haute‐Savoie, France). Eclogae Geologicae Helveticae, 82, 491–515.
    [Google Scholar]
  31. Gorin, G. E., & Monteil, E. (1990). Preliminary note on the organic facies, thermal maturity and dinoflagellate cysts of the upper Maastrichtian Wang Formation in the northern Subalpine massifs (western Alps, France). Eclogae Geologicae Helveticae, 83, 265–285.
    [Google Scholar]
  32. Henkes, G. A., Passey, B. H., Grossman, E. L., Shenton, B. J., Perez‐Huerta, A., & Yancey, T. E. (2014). Temperature limits for preservation of primary calcite clumped isotope paleotemperatures. Geochimica et Cosmochimica Acta, 139, 362–382. https://doi.org/10.1016/j.gca.2014.04.040
    [Google Scholar]
  33. Henkes, G. A., Passey, B. H., Wanamaker, A. D., Grossman, E. L., Ambrose, W. G., & Carroll, M. L. (2013). Carbonate clumped isotope compositions of modern marine mollusk and brachiopod shells. Geochimica et Cosmochimica Acta, 106, 307–325. https://doi.org/10.1016/j.gca.2012.12.020
    [Google Scholar]
  34. Honlet, R., Gasparrini, M., Jäger, H., Muchez, P., & Swennen, R. (2017). Precursor and ambient rock paleothermometry to assess the thermicity of burial dolomitization in the southern Cantabrian Zone (northern Spain). International Journal of Earth Sciences, 107(4), 1357–1377. https://doi.org/10.1007/s00531-017-1541-2
    [Google Scholar]
  35. Howard, J. J., & Roy, D. M. (1985). Development of layer charge and kinetics of experimental smectite alteration. Clays and Clay Minerals, 33, 81–88. https://doi.org/10.1346/CCMN.1985.0330201
    [Google Scholar]
  36. Huang, W.‐L.‐W., Longo, M.‐J.‐J., & Pevear, D.‐R.‐D. (1993). An experimentally derived kinetic model for smectite‐to‐illite conversion and its use as a geothermometer. Clays and Clay Minerals, 41, 162–177. https://doi.org/10.1346/CCMN.1993.0410205
    [Google Scholar]
  37. Huntington, K. W., Budd, D. A., Wernicke, B. P., & Eiler, J. M. (2011). Use of clumped‐isotope thermometry to constrain the crystallization temperature of diagenetic calcite. Journal of Sedimentary Research, 81, 656–669. https://doi.org/10.2110/jsr.2011.51
    [Google Scholar]
  38. Inoue, A., Bouchet, A., Velde, B., & Meunier, A. (1989). Convenient technique for estimating smectite layer percentage in randomly interstratified illite/smectite minerals. Clays and Clay Minerals, 37, 227–234. https://doi.org/10.1346/CCMN.1989.0370305
    [Google Scholar]
  39. Inoue, A., Kohyama, N., Kitagawa, R., & Watanabe, T. (1987). Chemical and morphological evidence for the conversion of smectite to illite. Clays and Clay Minerals, 35, 111–120. https://doi.org/10.1346/CCMN.1987.0350203
    [Google Scholar]
  40. Jeans, C. V., Mitchell, J. G., Fisher, M. J., Wray, D. S., & Hall, I. R. (2001). Age, origin and climatic signal of English Mesozoic clays based on K/Ar signatures. Clay Minerals, 36, 515–539. https://doi.org/10.1180/0009855013640006
    [Google Scholar]
  41. Jenkyns, H. C., Gale, A. S., & Corfield, R. M. (1994). Carbon‐ and oxygen‐isotope stratigraphy of the English Chalk and Italian Scaglia and its palaeoclimatic significance. Geological Magazine, 131, 1–34. https://doi.org/10.1017/S0016756800010451
    [Google Scholar]
  42. Katz, A., Bonifacie, M., Hermoso, M., Cartigny, P., & Calmels, D. (2017). Laboratory‐grown coccoliths exhibit no vital effect in clumped isotope composition on a range of geologically relevant temperatures. Geochimica et Cosmochimica Acta, 208, 335–353.
    [Google Scholar]
  43. Kele, S., Breitenbach, S. F. M., Capezzuoli, E., Meckler, A. N., Ziegler, M., Millan, I. M., … Bernasconi, S. M. (2015). Temperature dependence of oxygen‐ and clumped isotope fractionation in carbonates: A study of travertines and tufas in the 6–95°C temperature range. Geochimica et Cosmochimica Acta, 168, 172–192. https://doi.org/10.1016/j.gca.2015.06.032
    [Google Scholar]
  44. Kelson, J. R., Huntington, K. W., Schauer, A. J., Saenger, C., & Lechler, A. R. (2017). Toward a universal carbonate clumped isotope calibration: Diverse synthesis and preparatory methods suggest a single temperature relationship. Geochimica et Cosmochimica Acta, 197, 104–131. https://doi.org/10.1016/j.gca.2016.10.010
    [Google Scholar]
  45. Kharaka, Y. K., & Hanor, J. S. (2007). Deep fluids in the continents: 1. Sedimentary basins. Surface and Ground Water, Weathering and Soils . Book, Treatise on Geochemistry, 5.
  46. Kisch, H. J. (1980). Illite crystallinity and coal rank associated with lowest‐grade metamorphism of the Taveyanne greywacke in the Helvetic zone of the Swiss Alps. Eclogae Geologicae Helvetiae, 73, 753–777.
    [Google Scholar]
  47. Kluge, T., & John, C. M. (2015). Effects of brine chemistry and polymorphism on clumped isotopes revealed by laboratory precipitation of mono‐ and multiphase calcium carbonates. Geochimica et Cosmochimica Acta, 160, 155–168. https://doi.org/10.1016/j.gca.2015.03.031
    [Google Scholar]
  48. Kübler, B., & Jaboyedoff, M. (2000). Illite cristallinity. Comptes Rendus De L'académie Des Sciences, Paris, 331, 75–89.
    [Google Scholar]
  49. Kübler, B., Martini, J., & Vuagnat, M. (1974). Very low grade meatmorphism inthe Western Alps. Sclnreizerische Mineralogische Und Petrographische Mitteilungen, 54, 461–469.
    [Google Scholar]
  50. Lawson, M., Shenton, B. J., Stolper, D. A., Eiler, J. M., Rasbury, E. T., Becker, T. P., … Gournay, J. (2017). Deciphering the diagenetic history of the El Abra Formation of eastern Mexico using reordered clumped isotope temperatures and U‐Pb dating. Geological Society of America Bulletin, 130, 1–13. https://doi.org/10.1130/B31656.1
    [Google Scholar]
  51. Levert, J., & Ferry, S. (1988). Diagenèse argileuse complexe dans le mésozoïque subalpin révélée par cartographie des proportions relatives d’argiles selon des niveaux isochrones. Bulletin De La Société Géologique De France, 4, 1029–1038.
    [Google Scholar]
  52. Loyd, S. J., Corsetti, F. A., Eiler, J. M., & Tripati, A. K. (2012). Determining the diagenetic conditions of concretion formation: Assessing temperatures and pore waters using clumped isotopes. Journal of Sedimentary Research, 82, 1006–1016. https://doi.org/10.2110/jsr.2012.85
    [Google Scholar]
  53. Loyd, S. J., Dickson, J. A. D., Scholle, P. A., & Tripati, A. K. (2013). Extensive, uplift‐related and non‐fault‐controlled spar precipitation in the Permian Capitan Formation. Sedimentary Geology, 298, 17–27. https://doi.org/10.1016/j.sedgeo.2013.10.001
    [Google Scholar]
  54. Mangenot, X., Bonifacie, M., Gasparrini, M., Goetz, A., Chaduteau, C., Ader, M., & Rouchon, V. (2017). Coupling Δ47 and fluid inclusion thermometry on carbonate cements to precisely reconstruct the temperature, salinity and 18O of paleo‐groundwater in sedimentary basins. Chemical Geology, 472, 44–57.
    [Google Scholar]
  55. Mangenot, X., Gasparrini, M., Rouchon, V., & Bonifacie, M. (2018). Basin‐scale thermal and fluid flow histories revealed by carbonate clumped isotopes (Δ47) – Middle Jurassic carbonates of the Paris Basin depocentre. Sedimentology, 65, 123–150.
    [Google Scholar]
  56. Mangenot, X., Gasparrini, M., Gerdes, A., Bonifacie, M., & Rouchon, V. (2018). An emerging thermochronometer for carbonate-bearing rocks. ∆47/(U-Pb): Geology. https://doi.org/10.1130/G45196.1
    [Google Scholar]
  57. Moore, D. M., & Reynolds, R. C. J. (1997). X‐Ray Diffraction and identification and analysis of clay minerals (p. 378). Oxford: Oxford University Press.
    [Google Scholar]
  58. Moss, S. J. (1992). Organic maturation in the French Subalpine chains: Regional differences in burial history and the size of tectonic loads. Journal of the Geological Society (London), 149, 503–515. https://doi.org/10.1144/gsjgs.149.4.0503
    [Google Scholar]
  59. Nadeau, P. H., Wilson, M. J., McHardy, W. J., & Tait, J. M. (1985). The conversion of smectite to illite during diagenesis: Evidence from some illitic clays from bentonites and sandstones. Mineralogical Magazine, 49, 393–400. https://doi.org/10.1180/minmag.1985.049.352.10
    [Google Scholar]
  60. Pagel, M., Bonifacie, M., Schneider, D. A., Gautheron, C., Brigaud, B., Calmels, D., … Davis, D.(2018). A big step in paleohydrological and diagenetic reconstructions in calcite veins and breccia of a sedimentary basin by combining Δ47 temperature, 18Owater and U‐Pb age. Chemical Geology, 487, 1–17.
    [Google Scholar]
  61. Passey, B. H., & Henkes, G. A. (2012). Carbonate clumped isotope bond reordering and geospeedometry. Earth and Planetary Science Letters, 351–352, 223–236. https://doi.org/10.1016/j.epsl.2012.07.021
    [Google Scholar]
  62. Régnet, J. B., Robion, P., David, C., Fortin, J., Brigaud, B., & Yven, B. (2014). Acoustic and reservoir properties of microporous carbonate rocks: Implication of micrite particle size and morphology. Journal of Geophysical Research: Solid Earth, 120, 790–811.
    [Google Scholar]
  63. Richard, J., Sizun, J.‐P., & Machhour, L. (2007). Development and compartmentalization of chalky carbonate reservoirs: The Urgonian Jura‐Bas Dauphiné platform model (Génissiat, southeastern France). Sedimentary Geology, 198, 195–207. https://doi.org/10.1016/j.sedgeo.2006.12.003
    [Google Scholar]
  64. Roberson, H. E., & Lahann, R. W. (1981). Smectite to illite conversion rates: Effects of solution chemistry. Clays and Clay Minerals, 29, 129–135. https://doi.org/10.1346/CCMN.1981.0290207
    [Google Scholar]
  65. Rosenbaum, J., & Sheppard, S. M. (1986). An isotopic study of siderites, dolomites and ankerites at high temperatures. Geochimica et Cosmochimica Acta, 50, 1147–1150.
    [Google Scholar]
  66. Santrock, J., Studley, S. A., & Hayes, J. M. (1985). Isotopic analyses based on the mass spectrum of carbon dioxide. Analytical Chemistry, 57, 1444–1448.
    [Google Scholar]
  67. Sawatzki, G. G. (1975). Etude géologique et minéralogique des flyschs du synclinal (p. 148). De Thônes (Haute‐Savoie, France). Thèse 1643, Université De Genève.
  68. Schauble, E. A., Ghosh, P., & Eiler, J. M. (2006). Preferential formation of 13C–18O bonds in carbonate minerals, estimated using first‐principles lattice dynamics. Geochimica et Cosmochimica Acta, 70, 2510–2529. https://doi.org/10.1016/j.gca.2006.02.011
    [Google Scholar]
  69. Schegg, R. (1992a). Coalification, shale diagenesis and thermal mod‐ elling in the Alpine foreland basin: The western Molasse Basin (Switzerland/France). Organic Geochemistry, 18, 289–300.
    [Google Scholar]
  70. Schegg, R. (1992b). Thermal maturity of the Swiss Molasse Basin: Indications for paleogeothermal anomalies. Eclogae Geologicae Helvetiae, 85, 745–764.
    [Google Scholar]
  71. Schiinfeld, J. (2000). Oxygen isotope composition of Upper Cretaceous chalk at Lägerdorf (NW Germany): Its original environmental signal and palaeotemperature interpretation. Cretaceous Research, 12, 27–46.
    [Google Scholar]
  72. Schlager, W., & James, N. P. (1978). Low‐magnesian calcite limestones forming at the deep‐sea floor, Tongue of the Ocean, Bahamas. Sedimentology, 25, 675–702. https://doi.org/10.1111/j.1365-3091.1978.tb00325.x
    [Google Scholar]
  73. Shenton, B. J., Grossman, E. L., Passey, B. H., Henkes, G. A., Becker, T. P., Laya, J. C., … Lawson, M. (2015). Clumped isotope thermometry in deeply buried sedimentary carbonates: The effects of bond reordering and recrystallization. Geological Society of America Bulletin, 127, 1036–1051. https://doi.org/10.1130/B31169.1
    [Google Scholar]
  74. Środoń, J. (1980). Precise identification of Illite/Smectite interstratifications By X‐Ray powder diffraction. Clays and Clay Minerals, 28, 401–411. https://doi.org/10.1346/CCMN.1980.0280601
    [Google Scholar]
  75. Środoń, J., & Clauer, N. (2001). Diagenetic history of Lower Palaeozoic sediments in Pomerania (northern Poland), traced across the Teisseyre‐Tornquist tectonic zone using mixed‐layer illite‐smectite. Clay Minerals, 36, 15–27. https://doi.org/10.1180/000985501547321
    [Google Scholar]
  76. Środoń, J., Clauer, N., Huff, W., Dudek, T., & Banaś, M. (2009). K‐Ar dating of the Lower Palaeozoic K‐bentonites from the Baltic Basin and the Baltic Shield: Implications for the role of temperature and time in the illitization of smectite. Clay Minerals, 44, 361–387.
    [Google Scholar]
  77. Stacher, P. (1980). Stratigraphie, Mikrofazies Und Mikropaläontologie Der Wang Formation . Matér. Carte Géol. Suisse, (n.s.), 152.
  78. Stolper, D. A., & Eiler, J. M. (2015). The kinetics of solid‐state isotope‐exchange reactions for clumped isotopes: A study of inorganic calcites and apatites from natural and experimental samples. American Journal of Science, 315, 363–411. https://doi.org/10.2475/05.2015.01
    [Google Scholar]
  79. Šucha, V., Kraus, I., Gerthofferová, H., Petes, J., & Sereková, M. (1993). Smectite to illite conversion in bentonites and shales of the East Slovak Basin. Clay Minerals, 28, 243–253. https://doi.org/10.1180/claymin.1993.028.2.06
    [Google Scholar]
  80. Swanson, E. M., Wernicke, B. P., Eiler, J. M., & Losh, S. (2012). Temperatures and fluids on faults based on carbonate clumped‐isotope thermometry. American Journal of Science, 312, 1–21. https://doi.org/10.2475/01.2012.01
    [Google Scholar]
  81. Sweeney, J. J., & Burnham, A. K. (1990). Evaluation of a simple model of vitrinite reflectance based on chemical kinetics. American Association of Petroleum Geologists Bulletin, 74, 1559–1570.
    [Google Scholar]
  82. Thyberg, B., Jahren, J., Winje, T., Bjørlykke, K., Faleide, J. I., & Marcussen, Ø. (2010). Quartz cementation in Late Cretaceous mudstones, northern North Sea: Changes in rock properties due to dissolution of smectite and precipitation of micro‐quartz crystals. Marine and Petroleum Geology, 27, 1752–1764.
    [Google Scholar]
  83. Veizer, J., Ala, D., Azmy, K., Bruckschen, P., & Buhl, D. (1999). 87Sr/86Sr, d13C and d18O evolution of Phanerozoic seawater. Chemical Geology, 161, 59–88.
    [Google Scholar]
  84. Villard, F. (1988). Progradation de la Formation de Wang dans les chaînes subalpines septentrionales (Alpes occidentales, France) au Maastrichtien supérieur : Biostratigraphie et milieu de dépôt. Eclogae Geologicae Helvetiae, 81(3), 669–687.
    [Google Scholar]
  85. Villard, F. (1991). Evolution paléogéographique du domaine delphino‐helvétique (entre Chartreuse et Morcles) au Crétacé supérieur (Turonien‐Maastrichtien): Biostratigraphie, sédimentologie et dynamique sédimentaire sur une rampe carbonate (10, p. 173). Geneva, Switzerland: Pub. Département Géologie‐Paléontologie, Université De Genève.
    [Google Scholar]
  86. Wang, Z., Schauble, E. A., & Eiler, J. M. (2004). Equilibrium thermodynamics of multiply substituted isotopologues of molecular gases. Geochimica et Cosmochimica Acta, 68, 4779–4797.
    [Google Scholar]
  87. Watkins, J. M., Nielsen, L. C., Ryerson, F. J., & Depaolo, D. J. (2013). The influence of kinetics on the oxygen isotope composition of calcium carbonate. Earth and Planetary Science Letters, 375, 349–360. https://doi.org/10.1016/j.epsl.2013.05.054
    [Google Scholar]
  88. Zinsner, B., & Pellerin, F. M. (2007). A geoscientist’s guide to petrophysics (p. 450). Paris, France: Editions Technip.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12324
Loading
/content/journals/10.1111/bre.12324
Loading

Data & Media loading...

Supplements

 

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error