1887
Volume 31, Issue 2
  • E-ISSN: 1365-2117

Abstract

Abstract

The development of high‐resolution 3D seismic cubes has permitted recognition of variable subvolcanic features mostly located in passive continental margins. Our study area is situated in a different tectonic setting, in the extensional Pannonian Basin system (central Europe) where the lithospheric extension was associated with a wide variety of magmatic suites during the Miocene. Our primary objective is to map the buried magmatic bodies, to better understand the temporal and spatial variation in the style of magmatism and emplacement mechanism within the first order Mid‐Hungarian Fault Zone (MHFZ) along which the substantial Miocene displacement took place. The combination of seismic, borehole and log data interpretation enabled us to delineate various previously unknown subvolcanic‐volcanic features. In addition, a new approach of neural network analysis on log data was applied to detect and quantitatively characterise hydrothermal mounds that are hard to interpret solely from seismic data. The volcanic activity started in the Middle Miocene and induced the development of extrusive volcanic mounds south of the NE‐SW trending, continuous strike‐slip fault zone (Hajdú Fault Zone). In the earliest Late Miocene (11.6–9.78 Ma), the style of magmatic activity changed resulting in emplacement of intrusions and development of hydrothermal mounds. Sill emplacement occurred from south‐east to north‐west based on primary flow‐emplacement structures. The time of sill emplacement and the development of hydrothermal mounds can be bracketed by onlapped forced folds and mounds. This time coincided with the acceleration of sedimentation producing poorly consolidated, water‐saturated sediments preventing magma from flowing to the paleosurface. The change in extensional direction resulted in change in fault pattern, thus the formerly continuous basin‐bounding strike‐slip fault became segmented which could facilitate the magma flow toward the basin centre.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12326
2018-12-04
2024-03-28
Loading full text...

Full text loading...

References

  1. Baaske, U. P., Mutti, M., Baioni, F., Bertozzi, G., & Naini, M. A. (2007). Using multi‐attribute neural networks classification for seismic carbonate facies mapping: A workflow example from mid‐cretaceous Persian Gulf deposits. Special Publication of the Geological Society of London, 277, 105–120.
    [Google Scholar]
  2. Bacon, M., Simm, R., & Redshaw, T. (2007). 3‐D seismic interpretation. Cambridge: Cambridge University Press.
    [Google Scholar]
  3. Bada, G., Horváth, F., Dövényi, P., Szafián, P., Windhoffer, G., & Cloetingh, S. (2007). Present‐day stress field and tectonic inversion in the Pannonian Basin. Global and Planetary Change, 58, 165–180. https://doi.org/10.1016/j.gloplacha.2007.01.007
    [Google Scholar]
  4. Balázs, A., Matenco, L., Magyar, I., Horváth, F., & Cloetingh, S. (2016). The link between tectonics and sedimentation in back‐arc basins: New genetic constraints from the analysis of the Pannonian Basin. Tectonics, 35(6), 1526–1559. https://doi.org/10.1002/2015TC004109.
    [Google Scholar]
  5. Balla, Z. (1984). The Carpathian loop and the Pannonian basin: A kinematic analysis. Geophysical Transactions, 30(4), 313–353.
    [Google Scholar]
  6. Baranyi, V. (2013).A palynological study of the Tiszavasvári‐6 well. Unpublished report, Eötvös University, Budapest, Hungary, 1–12.
  7. Baranyi, V. (2016). A palynological study of the Tiszavasvári‐6 well, interval 2585m‐2783m. Unpublished report, University of Oslo, Norway, 1–7.
  8. Brown, A. R. (2004). Interpretation of three‐dimensional seismic data(6th ed).AAPG Memoir 42/SEG Investigations in Geophysics No.9.
  9. Chevalier, L., & Woodford, A. (1999). Morph‐tectonics and mechanism of emplacement of the dolerite rings and sills of the western Karoo, South Africa. S. African J. Geol., 102, 43–54.
    [Google Scholar]
  10. Ciulavu, D., Dinu, C., & Cloetingh, S. (2002). Late Cenozoic tectonic evolution of the Transylvanian basin and northeastern part of the Pannonian basin (Romania): Constraints from seismic profiling and numerical modelling. EGU Stephan Mueller Spec. Publ. Series, 3, 105–120.
    [Google Scholar]
  11. Ciulavu, D., Dinu, C., Szakács, A., & Dordea, D. (2000). Neogene kinematics of the Transylvanian basin (Romania). AAPG Bulletin, 84, 1589–1615.
    [Google Scholar]
  12. Cosgrove, J. W., & Hillier, R. D. (1999) Forced‐fold development within Tertiary sediments of the Alba Field, UKCS: Evidence of differential compaction and post‐depositional sandstone remobilization. In J. W.Cosgrove , & M. S.Ameen (Eds.), Forced folds and fractures. Geological Society, London, Special Publications, 169, 61–71.
    [Google Scholar]
  13. Csontos, L., Nagymarosy, A., Horváth, F., & Kovác, M. (1992). Cenozoic evolution of the Intra‐Carpathian area: A model. Tectonophysics, 208, 221–241.
    [Google Scholar]
  14. Dombrádi, E., Sokoutis, D., Bada, G., Cloetingh, S., & Horváth, F. (2010). Modelling recent deformation of the Pannonian lithosphere: Lithospheric folding and tectonic topography. Tectonophysics, 484(1–4), 103–118. https://doi.org/10.1016/j.tecto.2009.09.014
    [Google Scholar]
  15. Downes, H., Pantó, G., Póka, T., Mattey, D., & Greenwood, B. (1995) Calc‐alkaline volcanics of the Inner Carpathian arc, Northern Hungary: New geochemical and oxygen isotopic results. In: H.Downes , & O.Vaselli (Eds.), Neogene and related magmatism in the Carpatho‐Pannonian Region, Acta Vulcanologica, 7, 29–41.
    [Google Scholar]
  16. Eide, C. H., Schofield, N., Jerram, A. D., & Howell, J. A. (2017). Basin‐scale architecture of deeply emplaced sill complexes: Jameson Land, East Greenland. Journal of the Geological Society, 174, 23–40.
    [Google Scholar]
  17. Eide, C. H., Schofield, N., Lecomte, I., Buckley, S. J., & Howell, J. A. (2017). Seismic interpretation of sill‐complexes in sedimentary basins: The ‘sub‐sill imaging problem’. Journal of the Geological Society. https://doi.org/10.1144/jgs2017-096
    [Google Scholar]
  18. Fodor, L., Csontos, L., Bada, G., Györfy, I., & Benkovics, L. (1999) Tertiary tectonic evolution of the Pannonian basin system and neighbouring orogens: A new synthesis of paleostress data. In: B.Durand , L.Jolivet , F.Horváth , & M.Séranne (Eds.), The Mediterranean basins: Tertiary extension within the Alpine Orogen, Geological Society, London, Special Publications, 156, 295–334.
    [Google Scholar]
  19. Fodor, L., Jelen, B., Márton, E., Skaberne, D., Čar, J., & Vrabec, M. (1998). Miocene‐Pliocene tectonic evolution of the Slovenian Periadriatic Line and surrounding area – implication for Alpine‐Carpathian extrusion models. Tectonics, 17, 690–709.
    [Google Scholar]
  20. Földessy, J., & Kupi, L. (2009). Geological drill core log of the interval 1225–1243.73m of the SEE/PHGH1 Drill Hole. In T.Bódi , & J.Tóth (Eds.), Petrophysical properties of reservoir rocks Well GH‐1 (pp. 27–37). University of Miskolc, Research Institute of Applied Earth Sciences.
    [Google Scholar]
  21. Fossen, H., & Rotevatn, A. (2016). Fault linkage and relay structures in extensional settings ‐ A review. Earth‐Science Reviews, 154, 14–28. https://doi.org/10.1016/j.earscirev.2015.11.014
    [Google Scholar]
  22. Galerne, C. Y., Galland, O., Neumann, E.‐R., & Planke, S. (2011). 3D relationships between sills and their feeders: Evidence from the Golden Valley Sill Complex (Karoo Basin) and experimental modelling. Journal of Volcanology and Geothermal Research, 202, 189–199. https://doi.org/10.1016/j.jvolgeores.2011.02.006
    [Google Scholar]
  23. Galland, O., Planke, S., Neumann, E.‐R., & Malthe‐Sørenssen, A. (2009). Experimental modelling of shallow magma emplacement: Application to saucer‐shaped intrusions. Earth and Planetary Science Letters, 277(3), 373–383. https://doi.org/10.1016/j.epsl.2008.11.003
    [Google Scholar]
  24. Gifkins, C. C., & Allen, R. L. (2001). Textural and chemical characteristics of diagenetic and hydrothermal alteration in glassy volcanic rocks: Examples from the Mount Read Volcanics, Tasmania. Economic Geology, 96(5), 973–1002. https://doi.org/10.2113/96.5.973
    [Google Scholar]
  25. Görög, Á., Tóth, E., & Szentesi, Z. (2010). Micropaleontological study on cuttings of Tiszavasvári‐6 well. Part II. Unpublished report, Eötvös University, Budapest, 1–5.
  26. Gudmundsson, A., Lecoeur, N., Mohajeri, N., & Thordarson, T. (2014). Dike emplacement at Bardarbunga, Iceland, induces unusual stress changes, caldera formation, and earthquakes. Bulletin of Volcanology, 76, 869.
    [Google Scholar]
  27. Hansen, D. M., & Cartwright, J. (2006a). The three‐dimensional geometry and growth of forced folds above saucer‐shaped igneous sills. Journal of Structural Geology, 28, 1520–1535.
    [Google Scholar]
  28. Hansen, D. M., & Cartwright, J. (2006b). Saucer‐shaped sills with lobate morphology revealed by 3D seismic data: Implications for resolving a shallow‐level sill emplacement mechanism. Journal of the Geological Society, 163, 509–523.
    [Google Scholar]
  29. Hansen, D. M., Cartwright, J. A., & Thomson, D. (2004) 3D seismic analysis of the geometry of igneous sills and sill interaction relationships. In: R. J.Davies , J.Cartwright , S. A.Stewart , J. R.Underhill , & M.Lappin (Eds.), 3D seismic technology: Application to the exploration of sedimentary basins, Geological Society, London, Special Publications, 29, 199–208.
    [Google Scholar]
  30. Hansen, J. P. V., Cartwright, J. A., Huuse, M., & Clausen, O. R. (2005). 3D seismic expression of fluid migration and mud remobilization on the Gjallar Ridge, offshore Mid‐Norway. Basin Research, 17, 123–139. https://doi.org/10.1111/j.1365-2117.2005.00257.x
    [Google Scholar]
  31. Harangi, S. (2001). Neogene to Quaternary volcanism of the Carpathian‐Pannonian region—A review. Acta Geologica Hungarica, 44, 223–258.
    [Google Scholar]
  32. Harangi, S., Downes, H., Kósa, L., Szabó, C., Thirlwall, M. F., Mason, P. R. D., & Mattey, D. (2001). Almandine garnet in calc‐alkaline volcanic rocks of the northern Pannonian Basin (Eastern‐Central Europe): Geochemistry, petrogenesis and geodynamic implications. Journal of Petrology, 42, 1813–1843. https://doi.org/10.1093/petrology/42.10.1813
    [Google Scholar]
  33. Harangi, S., Downes, H., Thirlwall, M. F., & Gméling, K. (2007). Geochemistry, petrogenesis and geodynamic relationships of miocene calc‐alkaline volcanic rocks in the Western Carpathian Arc. Eastern Central Europe. Journal of Petrology, 48(12), 2261–2287. https://doi.org/10.1093/petrology/egm059
    [Google Scholar]
  34. Harangi, S., & Lenkey, L. (2007) Genesis of the neogene to quaternary volcanism in the Carpathian‐Pannonian Region: Role of subduction, extension and mantle plume. In L.Beccaluva , G.Bianchini , & M.Wilson (Eds.), Cenozoic volcanism in the Mediterranean area, Geol. Soc. Am. Spec. Publ., 418, 67–92.
    [Google Scholar]
  35. Hart, B. S. (2008). Channel detection in 3‐D seismic data using sweetness. AAPG Bulletin, 92, 733–742. https://doi.org/10.1306/02050807127
    [Google Scholar]
  36. Hohenegger, J., Coric, S., Khatun, M., Pervesler, P., Rögl, F., Rupp, C., … Wagreich, M. (2009). Cyclostratigraphic dating in the Lower Badenian (MiddleMiocene) of the Vienna Basin (Austria): The Baden‐Sooss core. International Journal of Earth Sciences, 98, 915–930. https://doi.org/10.1007/s00531-007-0287-7
    [Google Scholar]
  37. Holford, S. P., Schofield, N., Jackson, C.‐A.‐L., Magee, C., Green, P. F., & Duddy, I. R. (2013). Impacts of igneous intrusions on source and reservoir potential in prospective sedimentary basins along the Western Australian Continental Margin (pp. 1–11). Perth, WA: West Australian Basins Symposium.
    [Google Scholar]
  38. Holford, S. P., Schofield, N., Macdonald, J. D., Duddy, I. R., & Green, P. F. (2012). Seismic analysis of igneous systems in sedimentary basins and their impacts on hydrocarbon prospectivity: Examples from the Southern Australian margin. Austr. Petr. Prod. Exp. Assoc. J., 52, 229–252.
    [Google Scholar]
  39. Horváth, F. (1993). Towards a mechanical model for the Pannonian Basin. Tectonophysics, 226, 333–358.
    [Google Scholar]
  40. Horváth, F., Musitz, B., Balázs, A., Végh, A., Uhrin, A., Nádor, A., … Wórum, G. (2015). Evolution of the Pannonian basin and its geothermal resources. Geothermics, 53, 328–352. https://doi.org/10.1016/j.geothermics.2014.07.009
    [Google Scholar]
  41. Jackson, C.‐A.‐L. (2012). Seismic reflection imaging and controls on the preservation of ancient sill‐fed magmatic vents. Journal of the Geological Society, 169, 503–506. https://doi.org/10.1144/0016-76492011-147
    [Google Scholar]
  42. Jackson, C.‐A.‐L., Schofield, N., & Golenkov, B. (2013). Geometry and controls on the development of igneous sill‐related forced folds: A 2D seismic reflection case study from offshore southern Australia. Geological Society of America Bulletin, 125(11–12), 1874–1890. https://doi.org/10.1130/B30833.1
    [Google Scholar]
  43. Jamtveit, B., Svensen, H., Podladchikov, Y., & Planke, S. (2004) Hydrothermal vent complexes associated with sill intrusions in sedimentary basins. In: C.Breitkreuz , & N.Petford (Eds.), Physical geology of high‐level magmatic systems, Geological Society, London, Special Publications, 234, 233–241.
    [Google Scholar]
  44. Kázmér, M., & Kovács, S. (1985). Permian‐Palaeogene palaeogeography along the eastern part of the Insubric‐Periadriatic lineament system: Evidence for continental escape of the Bakony‐Drauzug unit. Acta Geologica Hungarica, 28, 71–84.
    [Google Scholar]
  45. Kiss, J. (2013). Hungarian geomagnetic data set and data processing: Spectral analysis and grid data processing. M. Geof., 54(2), 89–114. (in Hungarian with English abstract).
    [Google Scholar]
  46. Kiss, J. (2016). Comprehensive interpretation of gravity and magnetic anomalies in Carpathian‐Pannonian Region. Földt. Közl., 146(3), 275–298. (in Hungarian with English abstract).
    [Google Scholar]
  47. Kiss, J., & Gulyás, Á. (2006). Magnetic Δz anomaly map of Hungary, 1: 500 000. Eötvös Loránd Geophysical. Institute of Hungary.
  48. Kitsopoulos, K. (1997). The genesis of a mordenite deposit by hydrothermal alteration of pyroclastics on Polyegos Island, Greece. Clays and Clay Minerals, 45(5), 632–648. https://doi.org/10.1346/CCMN.1997.0450503
    [Google Scholar]
  49. Klarner, S., & Klarner, O. (2012). Identification of paleo‐volcanic rocks on seismic data. In F.Stoppa (Ed.), Updates in volcanology – A comprehensive approach to volcanological problems (pp. 181–206). Rijeka, Croatia: InTech.
    [Google Scholar]
  50. Koch, F. G., Johnson, A. M., & Pollard, D. D. (1981). Monoclinal bending of strata over laccolithic intrusions. Tectonophysics, 74, T21–T31. https://doi.org/10.1016/0040-1951(81)90189-X
    [Google Scholar]
  51. Konečný, V., Kovác, M., Lexa, J., & Šefara, J. (2002). Neogene evolution of the Carpatho‐Pannonian region: An interplay of subduction and back‐arc diapiric uprise in the mantle. EGU, Stephan Mueller Spec. Publ. Series, 1, 105–123.
    [Google Scholar]
  52. Kovács, I., Falus, G. Y., Stuart, G., Hidas, K., Szabó, C. S., Flower, M. F. J., … Zilahi‐Sebess, L. (2012). Seismic anisotropy and deformation patterns in upper xenoliths from the central Carpathian‐Pannonian region: Asthenospheric flow as a driving force for Cenozoic extension and extrusion?Tectonophysics, 514–517(5), 168–179.
    [Google Scholar]
  53. Kovacs, M., Seghedi, I., Yamamoto, M., Fülöp, A., Pécskay, Z., & Jurje, M. (2017). Miocene volcanism in the Oaş‐Gutâi Volcanic Zone, Eastern Carpathians, Romania: Relationship to geodynamic processes in the Transcarpathian Basin. Lithos, 294–295, 304–318. https://doi.org/10.1016/j.lithos.2017.09.027
    [Google Scholar]
  54. Lee, G. H., Young, I. K., Yoon, C. S., Kim, H. J., & Yoo, H. S. (2006). Igneous complexes in the eastern Northern South Yellow Sea Basin and their implications for hydrocarbon systems. Marine and Petroleum Geology, 23, 631–645. https://doi.org/10.1016/j.marpetgeo.2006.06.001
    [Google Scholar]
  55. Lexa, J., & Konečný, V. (1974). The Carpathian volcanic arc: A discussion. Acta Geologica Hungarica, 18, 279–294.
    [Google Scholar]
  56. Lourens, L., Hilgen, F., Shackleton, N. J., Laskar, J., & Wilson, D. (2004). The neogene period. In F. M.Gradstein , J. G.Ogg , & A. G.Smith (Eds.), A geologic time scale 2004 (pp. 409–440). Cambridge: Cambridge University Press.
    [Google Scholar]
  57. Lukács, R., Harangi, S., Bachmann, O., Guillong, M., Danisik, M., Von Quadt, A., … Szepesi, J. (2015). Zircon geochronology and geochemistry to constrain the youngest eruption events and magma evolution of the Mid‐Miocene ignimbrite flare‐up in the Pannonian Basin, eastern‐central Europe. Contributions to Mineralogy and Petrology, 170(5–6), 1–26. https://doi.org/10.1007/s00410-015-1206-8
    [Google Scholar]
  58. Lukács, R., Harangi, S., Guillong, M., Bachmann, O., Fodor, L., Buret, Y., … Zimmerer, M. (2018). Early to Mid‐Miocene syn‐extensional massive silicic volcanism in the Pannonian Basin (East‐Central Europe): Eruption chronology and geodynamic relations. Earth‐Science Reviews, 179, 1–19.
    [Google Scholar]
  59. Maccaferri, F., Rivalta, E., Keir, D., & Acocella, V. (2014). Off‐rift volcanism in rift‐zones determined by crustal loading. Natural Geoscience, 7, 297–300.
    [Google Scholar]
  60. Magee, C., Duffy, O. B., Purnell, K., Bell, R. E., Jackson, C. A. L., & Reeve, M. T. (2016). Fault‐controlled fluid flow inferred from hydrothermal vents imaged in 3D seismic reflection data, offshore Australia. Basin Research, 28, 299–318.
    [Google Scholar]
  61. Magee, C., Hunt‐Stewart, E., & Jackson, C.‐A.‐L. (2013). Volcano growth mechanisms and the role of sub‐volcanic intrusions: Insights from 2D seismic reflection data. Earth Plan. Sci. Let., 373, 41–53.
    [Google Scholar]
  62. Magee, C., Jackson, C.‐A.‐L., & Schofield, N. (2013). The influence of normal fault geometry on igneous sill emplacement and morphology. Geology, 41(4), 407‐410, https://doi.org/10.1130/G33824.1
    [Google Scholar]
  63. Magee, C., Jackson, C.‐A.‐L., & Schofield, N. (2014). Diachronous sub‐volcanic intrusion along deep‐water margins: Insights from the Irish Rockall Basin. Basin Research, 26, 85–105. https://doi.org/10.1111/bre.12044
    [Google Scholar]
  64. Magee, C., Maharaj, S. M., Wrona, T., & Jackson, C.‐A.‐L. (2015). Controls on the expression of igneous intrusions in seismic reflection data. Geosphere, 11(4), 1024–1041. https://doi.org/10.1130/GES01150.1
    [Google Scholar]
  65. Magyar, I., Geary, D. H., & Müller, P. (1999). Paleogeographic evolution of the Late Miocene Lake Pannon in Central Europe. Palaeogeography, Palaeoclimatology, Palaeoecology, 147, 151–167. https://doi.org/10.1016/S0031-0182(98)00155-2
    [Google Scholar]
  66. Magyar, I., Radivojević, D., Sztanó, O., Synak, R., Ujszászi, K., & Pócsik, M. (2013). Progradation of the paleo‐Danube shelf margin across the Pannonian Basin during the Late Miocene and Early Pliocene. Global and Planetary Change, 103, 168–173. https://doi.org/10.1016/j.gloplacha.2012.06.007
    [Google Scholar]
  67. Malthe‐Sørenssen, A., Planke, S., Svensen, H., & Jamtveit, B. (2004) Formation of saucer‐shaped sills. In: C.Breitkreuz , & N.Petford (Eds.), Physical geology of highlevel magmatic systems, Geological Society, London Special Publications, 234, 215–227.
    [Google Scholar]
  68. Malvić, T., Velić, J., Horváth, J., & Cvetković, M. (2010). Neural networks in petroleum geology as interpretation tools. Central European Geology, 53(1), 97–115. https://doi.org/10.1556/CEuGeol.53.2010.1.6
    [Google Scholar]
  69. Marantos, I., Christidis, G. E., & Ulmanu, M. (2011). Zeolite formation and deposits. In V. J.Inglezakis , & A. A.Zorpas (Eds.), Handbook of natural zeolites (pp. 19–36). Sharjah, United Arab Emirates: Bentham Science Publishers.
    [Google Scholar]
  70. Mark, J. N., Schofield, N., Pugliese, S., Watson, D., Holford, S., Muirhead, D., … Healy, D. (2018). Igneous intrusions in the Faroe Shetland basin and their implications for hydrocarbon exploration; new insights from well and seismic data. Marine and Petroleum Geology, 92, 733–753. https://doi.org/10.1016/j.marpetgeo.2017.12.005
    [Google Scholar]
  71. Márton, E., Tischler, M., Csontos, L., Fügenschuch, B., & Schmid, S. (2007). The contact zone between the ALCAPA and Tisza‐Dacia mega‐tectonic units of Northern Romania in the light of new paleomagnetic data. Swiss Journal of Geosciences, 100(1), 109–124. https://doi.org/10.1007/s00015-007-1205-5
    [Google Scholar]
  72. Matenco, L., Bertotti, G., Leever, K., Cloetingh, S., Schmid, S. M., Tărăpoancă, M., & Dinu, C. (2007). Large‐scale deformation in a locked collisional boundary: Interplay between subsidence and uplift, intraplate stress, and inherited lithospheric structure in the late stage of the SE Carpathians evolution. Tectonics, 26(4), 1–29. https://doi.org/10.1029/2006TC001951.
    [Google Scholar]
  73. Neubauer, F., & Genser, J. (1990). Architectur und kinematik der östlichen Zentralalpen – eine übersicht. Mitteilungen Des Naturwissenschaftlichen Vereines Für Steiermark, 120, 203–219.
    [Google Scholar]
  74. Palotai, M., & Csontos, L. (2010). Strike‐slip reactivation of a Palaeogene to Miocene fold and thrust belt along the central part of the Mid‐Hungarian Shear Zone. Geol. Carp., 61(6), 483–493.
    [Google Scholar]
  75. Pécskay, Z., & Molnár, F. (2002). Relationships between volcanism and hydrothermal activity in the Tokaj Mountains, northeast Hungary, based on K‐Ar ages. Geol. Carp., 53(5), 303–314.
    [Google Scholar]
  76. Pécskay, Z., Lexa, J., Szakács, A., Seghedi, I., Balogh, K., Konečný, V., … Cvetković, V. (2006). Geochronology of Neogene magmatism in the Carpathian arc and intra‐Carpathian area. Geol. Carp., 57, 511–530.
    [Google Scholar]
  77. Petrik, A. (2016) Cenozoic structural evolution of the southern Bükk foreland. Ph.D Dissertation, Eötvös University, Dept. of Applied and Physical Geology, Budapest.
  78. Petrik, A., Beke, B., & Fodor, L. (2014). Combined analysis of faults and deformation bands reveals the Cenozoic structural evolution of the southern Bükk foreland (Hungary). Tectonophysics, 633, 43–62. https://doi.org/10.1016/j.tecto.2014.06.029
    [Google Scholar]
  79. Planke, S., Rasmussen, T., Rey, S. S., & Myklebust, R.. (2005) Seismic characteristics and distribution of volcanic intrusions an hydrothermal vent complexes in the Voring and More basins. In A. G.Doré , & B.Vining (Eds.) Petroleum geology: Northwest Europe and global perspectives‐proceedings of the Sixth Petroleum Conference, Geol. Soc. London, Petr. Geol. Conf. S., 6, 833–844.
    [Google Scholar]
  80. Planke, S., Svensen, H., Myklebust, R., Bannister, S., Manton, B., & Lorenz, L. (2014). Geophysics and remote sensing. In S.Rocchi (Ed.), Physical geology of shallow magmatic systems (pp. 1–16). Switzerland: Springer International Publishing.
    [Google Scholar]
  81. Pogácsás, G. y., Mattick, R. E., Elston, D. P., Hámor, T., Jámbor, Á., Lakatos, L., … Várnai, P. (1994). Correlation of seismo‐ and magnetostratigraphy in Southeastern Hungary. In P. G.Teleki , R. E.Mattick , & J.Kókai (Eds.), Basin analysis in petroleum exploration: A case study from the Békés basin, Hungary (pp. 143–160). Dordrecht, the Netherlands: Kluwer Academic Publishers.
    [Google Scholar]
  82. Pollard, D. D., & Johnson, A. M. (1973). Mechanics of growth of some laccolithic intrusions in the Henry Mountains, Utah, II: Bending and failure of overburden layers and sill formation. Tectonophysics, 18, 311–354. https://doi.org/10.1016/0040-1951(73)90051-6
    [Google Scholar]
  83. Polteau, S., Ferre, E. C., Planke, S., Neumann, E. R., & Chevallier, L. (2008). How are saucer‐shaped sills emplaced? Constraints from the Golden Valley Sill, South Africa. Journal of Geophysical Research, 113, B12104. https://doi.org/10.1029/2008JB005620
    [Google Scholar]
  84. Radovich, B. J., & Oliveros, R. B. (1998). 3D sequence interpretation of seismic instantaneous attributes from the Gorgon Field. The Leading Edge, 17, 1286–1293. https://doi.org/10.1190/1.1438125
    [Google Scholar]
  85. Raeesi, M., Moradzadeh, A., Ardejani, F. D., & Rahimi, M. (2012). Classification and identification of hydrocarbon reservoir lithofacies and their heterogeneity using seismic attributes, logs data and artificial neural networks. Journal of Petroleum Science and Engineering, 82–83, 151–165. https://doi.org/10.1016/j.petrol.2012.01.012
    [Google Scholar]
  86. Ratschbacher, L., Frisch, W., Neubauer, F., Schmid, S., & Neugebauer, J. (1989). Extension in compressional orogenic belts: The Eastern Alps. Geology, 17, 404–407. https://doi.org/10.1130/0091-7613(1989)017<0404:EICOBT>2.3.CO;2
    [Google Scholar]
  87. Reynolds, P., Holford, S., Schofield, N., & Ross, A. (2017). The shallow depth emplacement of mafic intrusions on a magma‐poor rifted margin: An example from the Bight Basin, southern Australia. Marine and Petroleum Geology, 88, 605–616. https://doi.org/10.1016/j.marpetgeo.2017.09.008.
    [Google Scholar]
  88. Roberts, K. S., Davies, R. J., Stewart, S. A., & Tingay, M. (2011). Structural controls on mud volcano vent distributions: Examples from Azerbaijan and Lusi, East Java. Journal of the Geological Society, 168, 1013–1030. https://doi.org/10.1144/0016-76492010-158
    [Google Scholar]
  89. Royden, L. H. (1993). Evolution of retreating subduction boundaries formed during continental collision. Tectonics, 12, 629–638.
    [Google Scholar]
  90. Royden, L. H., & Horváth, F. (1988). The Pannonian basin – A study in basin evolution. AAPG Memoir, 45, 1–394.
    [Google Scholar]
  91. Royden, L. H., Horváth, F., & Burchfiel, B. C. (1982). Transform faulting, extension, and subduction in the Carpathian Pannonian region. Geological Society of America Bulletin, 93, 717–725.
    [Google Scholar]
  92. Ruszkiczay‐Rüdiger, Z. S., Fodor, L. I., & Horváth, E. (2007). Neotectonics and quaternary landscape evolution of the Gödöllő Hills, Central Pannonian Basin, Hungary. Global and Planetary Change, 58(1–4), 181–196. https://doi.org/10.1016/j.gloplacha.2007.02.010
    [Google Scholar]
  93. Saggaf, M., Toksöz, M. N., & Mustafa, H. M. (2003). Estimation of reservoir properties from seismic data by smooth neural networks. Geophysics, 68(6), 1969–1983. https://doi.org/10.1190/1.1635051.
    [Google Scholar]
  94. Săndulescu, M..(1988) Cenozoic tectonic history of the Carpathians. In L.Royden , & F.Horváth (Eds.) The Pannonian basin – A study in basin evolution, AAPG Memoir, 45, 17–25.
    [Google Scholar]
  95. Schmid, S. M., Bernoulli, D., Fügenschuch, B., Matenco, L., Scheffer, S., Schuster, R., … Ustaszewski, K. (2008). The Alpine‐Carpathian‐Dinaridic orogenic system: Correlation and evolution of tectonic units. Swiss Journal of Geosciences, 101, 139–183. https://doi.org/10.1007/s00015-008-1247-3
    [Google Scholar]
  96. Schofield, N.(2009) Linking sill morphology to emplacement mechanisms. PhD Dissertation, University of Birmingham, Dept. of Earth Sciences, Birmingham.
  97. Schofield, N. J., Brown, D. J., Magee, C., & Stevenson, C. T. (2012). Sill morphology and comparison of brittle and nonbrittle emplacement mechanisms. Journal of the Geological Society, 169, 127–141.
    [Google Scholar]
  98. Schofield, N., Heaton, L., Holford, S. P., Archer, S. G., Jackson, C.‐A.‐L., & Jolley, D. W. (2012). Seismic imaging of ‘broken bridges’: Linking seismic to outcrop‐scale investigations of intrusive magma lobes. Journal of the Geological Society, 169(4), 421–426.
    [Google Scholar]
  99. Schofield, N., Stevenson, C., & Reston, T. (2010). Magma fingers and host rock fluidization in the emplacement of sills. Geology, 38, 63–66. https://doi.org/10.1130/G30142.1
    [Google Scholar]
  100. Schofield, N., Holford, S., Millett, J., Brown, D., Jolley, D., Passey, S. R., … Stevenson, C. (2017). Regional Magma plumbing and emplacement mechanisms of the Faroe‐Shetland Sill Complex: Implications for magma transport and petroleum systems within sedimentary basins. Basin Research, 29(1), 41–63.
    [Google Scholar]
  101. Schofield, N., Jolley, D., Holford, S., Archer, S., Watson, D., Hartley, A., … Green, P. (2017). Challenges of future exploration within the UK Rockall Basin. J. Geol. Soc. Petr. Geol. Conf. Ser., 8, 211–229.
    [Google Scholar]
  102. Seghedi, I., & Downes, H. (2011). Geochemistry and tectonic development of Cenozoic magmatism in the Carpathian‐Pannonian region. Gondwana Research, 20, 655–672. https://doi.org/10.1016/j.gr.2011.06.009
    [Google Scholar]
  103. Seghedi, I., Downes, H., Szakács, A., Mason, P. R. D., Thirlwall, M. F., Rosu, E., … Panaiotu, C. (2004). Neogene to quaternary magmatism and geodynamics in the Carpathian‐Pannonian region: A synthesis. Lithos, 72, 117–146.
    [Google Scholar]
  104. Sheridan, M. F., & Wohletz, K. H. (1983). Hydrovolcanism: Basic considerations and review. Journal of Volcanology and Geothermal Research, 17, 1–29. https://doi.org/10.1016/0377-0273(83)90060-4
    [Google Scholar]
  105. Soliva, R., & Schultz, R. A. (2008). Distributed and localized faulting in extensional settings: Insight from the North Ethiopian Rift‐Afar transition area. Tectonics, 27(2), 1–19. https://doi.org/10.1029/2007TC002148
    [Google Scholar]
  106. Soták, J., Biroň, A., Prokešová, R., & Spišiak, J. (2000). Detachment control of core complex exhumation and back‐arc extension in the East Slovakian Basin. Slovak Geol. Mag., 6(2–3), 130–132.
    [Google Scholar]
  107. Suleiman, A., Magee, C., Jackson, C.‐L., & Fraser, A. (2017). Igneous activity in the Bornu Basin, onshore NE Nigeria; implications for opening of the South Atlantic. Journal of the Geological Society, 174, 667–678. https://doi.org/10.1144/jgs2016-107
    [Google Scholar]
  108. Svensen, H., Jamtveit, B., Planke, S., & Chevallier, L. (2006). Structure and evolution of hydrothermal vent complexes in the Karoo Basin, South Africa. Journal of the Geological Society, 163, 671–682. https://doi.org/10.1144/1144-764905-037
    [Google Scholar]
  109. Szabó, C., Harangi, S., & Csontos, L. (1992). Review of neogene and quaternary volcanism of the Carpathian‐Pannonian region. Tectonophysics, 208, 243–256. https://doi.org/10.1016/0040-1951(92)90347-9
    [Google Scholar]
  110. Széky‐Fux, V., Kozák, M., & Püspöki, Z. (2007). Covered neogene magmatism in eastern Hungary. Acta GGM Debrecina Geol. Geomorph. Phys. Geogr., 2, 79–104.
    [Google Scholar]
  111. Széky‐Fux, V., Pécskay, Z., & Balogh, K. (1987). Buried Miocene volcanites of Northern and central Tiszántúl, E. Hungary, and their K/Ar radiometric chronology. Földt. Közl., 177, 223–235.
    [Google Scholar]
  112. Sztanó, O., Szafián, P., Magyar, I., Horányi, A., Bada, G., Hughes, D. W., … Wallis, R. J. (2013). Aggradation and progradation controlled clinothems and deep‐water sand delivery model in the Neogene Lake Pannon, Makó Trough, Pannonian Basin, SE Hungary. Global and Planetary Change, 103, 149–167. https://doi.org/10.1016/j.gloplacha.2012.05.026
    [Google Scholar]
  113. Tari, G., Horváth, F., & Rumpler, J. (1992). Styles of extension in the Pannonian basin. Tectonophysics, 208, 203–219. https://doi.org/10.1016/0040-1951(92)90345-7
    [Google Scholar]
  114. ter Borgh, M., Vasiliev, I., Stoica, M., Knežević, S., Matenco, L., Krijgsman, W., … Cloetingh, S. (2013). The isolation of the Pannonian basin (Central Paratethys): New constraints from magnetostratigraphy and biostratigraphy. Global and Planetary Change, 103, 99–118. https://doi.org/10.1016/j.gloplacha.2012.10.001
    [Google Scholar]
  115. Thomson, K., & Hutton, D. (2004). Geometry and growth of sill complexes: Insights using 3D seismic from the North Rockall Trough. Bulletin of Volcanology, 66(4), 364–375. https://doi.org/10.1007/s00445-003-0320-z
    [Google Scholar]
  116. Tischler, M., Gröger, M., Fügenschuch, B., & Schmid, S. M. (2007). Miocene tectonics of the Maramures area (Northern Romania): Implications for the Mid‐Hungarian fault zone. International Journal of Earth Sciences, 96, 473–496. https://doi.org/10.1007/s00531-006-0110-x
    [Google Scholar]
  117. Tivey, M. (2016). Black and White Smokers. In J.Hariff , M.Meschede , S.Petersen , & J.Thiede (Eds.), Encyclopedia of Marine Geosciences (pp. 58–62). Berlin: Springer Verlag.
    [Google Scholar]
  118. Trude, K. J. (2004). Kinematic indicators for shallow level igneous intrusion from 3D seismic data; evidence of flow direction and feeder location. In R. J.Davies , J. A.Cartwright , S. A.Stewart , M.Lappin , & J. R.Underhill (Eds.), 3D Seismic Technology: Application to the Exploration of Sedimentary Basins, Geol. Soc. London, Memoirs, 29, 209–217.
    [Google Scholar]
  119. Walker, R. (2016). Controls on transgressive sill growth. Geology, 44, 99–102. https://doi.org/10.1130/G37144.1
    [Google Scholar]
  120. Wallmann, P. C., Pollard, D. D., Hildreth, W., & Eichelberger, J. C. (1990). New structural limits on magma chamber locations at the Valley of Ten Thousand Smokes, Katmai National Park, Alaska. Geology, 18, 1240–1243. https://doi.org/10.1130/0091-7613(1990)018<1240:NSLOMC>2.3.CO;2
    [Google Scholar]
  121. West, B. P., May, S. R., Eastwood, J. E., & Rossen, C. (2002). Interactive seismic facies classification using textural and neural networks. The Leading Edge, 21(10), 1042–1049.
    [Google Scholar]
  122. Wohletz, K. H. (1983). Mechanism of hydrovolcanic pyroclast formation: Grain‐size, scanning electron microscopy and experimental studies. J. Volc. Geoth. Res., 17, 31–63.
    [Google Scholar]
  123. Zelenka, T., Balázs, E., & Balogh, K. (2004). Buried neogene volcanic structures in Hungary. Acta Geologica Hungarica, 47(2), 177–219. https://doi.org/10.1556/AGeol.47.2004.2-3.6
    [Google Scholar]
  124. Zhao, F., Alves, T. M., Wu, S., Li, W., Huuse, M., Mi, L., … Ma, B. (2016). Prolonged post‐rift magmatism on highly extended crust of divergent continental margins (Baiyun Sag, South China Sea). Earth and Planetary Science Letters, 445, 79–91. https://doi.org/10.1016/j.epsl.2016.04.001
    [Google Scholar]
  125. Zhao, T., Jayaram, V., Roy, A., & Marfurt, K. J. (2015). A comparison of classification techniques for seismic facies recognition. Interpretation, 3–4, SAE29‐SAE58. https://doi.org/10.1190/INT-2015-0044.1
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12326
Loading
/content/journals/10.1111/bre.12326
Loading

Data & Media loading...

Supplements

 

 

 

WORD

 

 

 

 

WORD

 

WORD
  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error