1887

Abstract

Summary

Numerous forced and spontaneous imbibition experiments in carbonate cores have demonstrated that the injection of modified-salinity water with an ionic composition different from the formation water (also called Smart Water) accelerates oil recovery and reduces the remaining oil saturation. Different physical mechanisms are suggested based on the carbonate-oil-brine physicochemical interactions, e.g., wettability alteration due to the ion exchange and surface complexation, carbonate dissolution, and water-weakening (only in chalk). Each of these can be described by relatively accurate thermodynamic models (e.g., ion exchange and dissolution) or a combination of thermodynamics and semi-empirical models. Although there is still an ongoing discussion on the importance and/or relevance of these physical mechanisms, it is widely accepted that due to the change in ionic composition the mobilities of the oleic phase and to a lesser extent the aqueous phase are altered toward a more water-wet state, exhibiting increased capillary forces and improved sweep efficiency. This is reflected in the mathematical models as two sets of relative permeability curves, one for the formation water-oil and modified-salinity water-oil systems. The multiphase flow model switches between these relative permeabilities based on a chosen indicator in the carbonate-oil-brine system, e.g., the total salinity of the brine for simple transport models to the surface density of a complex on the carbonate surface for more complicated reactive transport models. A quick review of the literature shows that apart from the complexity of the reactive transport models and the chosen indicator for the mobility alteration, almost all the proposed models can reasonably fit the measured recovery factors in a selected set of smart water core floodings. This is due to the large number of adjustable parameters in the two sets of relative permeability curves, which makes the choice of physical mechanism for the development of a mechanistic model irrelevant. Here, we address this problem by performing a constrained history matching of the Smart Water core flooding in carbonate cores (limestone and chalk). Moreover, we give a higher priority to fitting the oil breakthrough time during the smart-water injection in tertiary mode. We use an optimized surface complexation model to accurately simulate the adsorption of ions on the carbonate surface at high temperature. We then couple it with an in-house finite volume solver and a state of the art optimization package to obtain the relative permeability parameters. Our results show that the oil breakthrough times can only be correctly obtained by accurately modeling the carbonate-brine interactions and choosing the adsorbed potential determining ions’ concentrations as a mobility-modifier indicator.

Loading

Article metrics loading...

/content/papers/10.3997/2214-4609.201900071
2019-04-08
2024-03-28
Loading full text...

Full text loading...

References

  1. Alameri, W., Teklu, T.W., Graves, R.M., Kazemi, H, AlSumaiti, A.M.
    [2014] Wettability alteration during low-salinity water-flooding in carbonate reservoir cores. SPE Asia Pacific Oil Gas Conf. Exhib. - Chang. Game Oppor. Challenges Solut. APOGCE 2014 2, 1199–1216. doi:10.2118/171529‑MS
    https://doi.org/10.2118/171529-MS [Google Scholar]
  2. Alvarado, V., Garcia-Olvera, G, Hoyer, P., Lehmann, T.E.
    [2014] Impact of polar components on crude oil-water interfacial film formation: A mechanisms for low-salinity water flooding. Proc. - SPE Annu. Tech. Conf. Exhib.4, 3114–3128.
    [Google Scholar]
  3. Austad, T., Shariatpanahi, S.F., Strand, S., Black, C.J.J., Webb, K.J.
    [2012] Conditions for a low-salinity Enhanced Oil Recovery (EOR) effect in carbonate oil reservoirs. Energy and Fuels26, 569–575. doi:10.1021/ef201435g
    https://doi.org/10.1021/ef201435g [Google Scholar]
  4. Austad, T., Strand, S.
    , [2008] New method to clean carbonate reservoir cores by seawater. Int. Symp. Soc. Core Anal. held Abu Dhabi, UAE 1–12.
    [Google Scholar]
  5. Austad, T., Strand, S., Høgnesen, E.J., Zhang, P.
    [2005] Seawater as IOR Fluid in Fractured Chalk. 2005 SPE Int. Symp. Oilf Chem.1–10. doi:10.2118/93000‑MS
    https://doi.org/10.2118/93000-MS [Google Scholar]
  6. Awolayo, A., Sarma, H, AlSumaiti, A.M.
    [2014] A laboratory study of ionic effect of smart water for enhancing oil recovery in carbonate reservoirs. SPE EOR Conf Oil Gas West Asia 2014 Driv. Integr. Innov. EOR46–69. doi:10.2118/169662‑MS
    https://doi.org/10.2118/169662-MS [Google Scholar]
  7. Bezanson, J., Edelman, A., Karpinski, S., Shah, V.B.
    [2014] Julia: A Fresh Approach to Numerical Computing59, 65–98. doi:10.1137/141000671
    https://doi.org/10.1137/141000671 [Google Scholar]
  8. Chandrasekhar, S., Mohanty, K.K.
    [2013] Wettability Alteration with Brine Composition in High Temperature Carbonate Reservoirs. SPE Annu. Tech Conf Exhib.17. doi:10.2118/166280‑MS
    https://doi.org/10.2118/166280-MS [Google Scholar]
  9. Derkani, M., Fletcher, A., Abdallah, W., Sauerer, B., Anderson, J., Zhang, Z.
    [2018] Low Salinity Waterflooding in Carbonate Reservoirs: Review of Interfacial Mechanisms. Colloids and Interfaces2, 20. doi:10.3390/colloids2020020
    https://doi.org/10.3390/colloids2020020 [Google Scholar]
  10. Eftekhari, A.A., Thomsen, K., Stenby, E.H., Nick, H.M.
    [2017] Thermodynamic Analysis of Chalk-Brine-Oil Interactions. Energy & Fuels31, 11773–11782. doi:10.1021/acs.energyfuels7b02019
    https://doi.org/10.1021/acs.energyfuels7b02019 [Google Scholar]
  11. Fathi, S.J., Austad, T., Strand, S.
    [2010] “smart water” as a wettability modifier in chalk: The effect of salinity and ionic composition. Energy and Fuels24, 2514–2519. doi:10.1021/ef901304m
    https://doi.org/10.1021/ef901304m [Google Scholar]
  12. Fernø, MA., Grønsdal, R, Åsheim, J Nyheim, A., Berge, M., Graue, A.
    [2011] Use of sulfate for water based enhanced oil recovery during spontaneous imbibition in chalk. Energy and Fuels25,1697–1706. doi:10.1021/ef200136w
    https://doi.org/10.1021/ef200136w [Google Scholar]
  13. Gablonsky, J.M.; Kelley, C.T.
    [2001] A locally-biased form of the DIRECT algorithm. J. Glob. Optim.21, 27–37.
    [Google Scholar]
  14. Gomari, K.A.R, Hamouda, A.A., Denoyel, R
    [2006] Influence of sulfate ions on the interaction between fatty acids and calcite surface. Colloids Surfaces A Physicochem. Eng. Asp.287, 29–35. doi:10.1016/j.colsurfa.2006.03.018
    https://doi.org/10.1016/j.colsurfa.2006.03.018 [Google Scholar]
  15. Gupta, R., SmithJr., P.G., Hu, L., Willingham, T.W., Lo Cascio, M., Shyeh, J.J., Harris, C.R.
    [2011] Enhanced waterflood for Middle East carbonate cores - Impact of injection water composition. 17th Middle East Oil Gas Show Conf.2011, MEOS 2011 3, 2052–2072. doi:10.2118/142668‑MS
    https://doi.org/10.2118/142668-MS [Google Scholar]
  16. Hamouda, A.A., Gupta, S.
    [2017] Enhancing oil recovery from chalk reservoirs by a low-salinity water flooding mechanism and fluid/rock interactions. Energies10. doi:10.3390/en10040576
    https://doi.org/10.3390/en10040576 [Google Scholar]
  17. Hiorth, A., Cathles, L.M., Madland, M. V.
    [2010] The Impact of Pore Water Chemistry on Carbonate Surface Charge and Oil Wettability. Transp. Porous Media85, 1–21. doi:10.1007/s11242‑010‑9543‑6
    https://doi.org/10.1007/s11242-010-9543-6 [Google Scholar]
  18. Karimi, M., Al-Maamari, R.S., Ayatollahi, S., Mehranbod, N.
    [2015] Mechanistic study of wettability alteration of oil-wet calcite: The effect of magnesium ions in the presence and absence of cationic surfactant. Colloids Surfaces A Physicochem. Eng. Asp.482, 403–415. doi:10.1016/j.colsurfa.2015.07.001
    https://doi.org/10.1016/j.colsurfa.2015.07.001 [Google Scholar]
  19. Kashaa, A., Al-Hashima, H., Abdallahb, W., Taherianb, R., Sauererb, B.
    [2015] Effect of Ca2+,Mg2+ and SO42–ions on the zeta potential of calcite and dolomite particles aged with stearic acid. J. Urol.482, 290–299. doi:https://doi.org/10.1016/j.colsurfa.2015.05.043
    [Google Scholar]
  20. Liu, J., Wani, O.B., Alhassan, S.M., Pantelides, S.T.
    [2018] Wettability Alteration and Enhanced Oil Recovery Induced by Proximal Adsorption of of Na+,Cl-,Ca2+,Mg2+, and SO2-4 Ions on Calcite. Phys. Rev. Appl.10, 34064. doi:10.1103/PhysRevApplied.10.034064
    https://doi.org/10.1103/PhysRevApplied.10.034064 [Google Scholar]
  21. Mahani, H., Keya, A.L., Berg, S., Bartels, W.-B., Nasralla, R., Rossen, W.R.
    [2015a] Insights into the Mechanism of Wettability Alteration by Low-Salinity Flooding (LSF) in Carbonates. Energy & Fuels29, 1352–1367. doi:10.1021/ef5023847
    https://doi.org/10.1021/ef5023847 [Google Scholar]
  22. Mahani, H., Keya, A.L., Berg, S., Nasralla, R.
    [2017] Electrokinetics of Carbonate/Brine Interface in Low-Salinity Waterflooding: Effect of Brine Salinity, Composition, Rock Type, and pH on zeta-potential and a Surface-Complexation Model. SPE J.22, 053–068. doi:10.2118/181745‑PA
    https://doi.org/10.2118/181745-PA [Google Scholar]
  23. [2015b] The Effect of Salinity, Rock Type and pH on the Electrokinetics of Carbonate-Brine Interface and Surface Complexation Modeling. SPE Reserv. Characterisation Simul. Conf. Exhib. Abu Dhabi, UAE, 14-16 Sept. 2015 25. doi:10.2118/175568‑MS
    https://doi.org/10.2118/175568-MS [Google Scholar]
  24. Mahani, H., Menezes, R., Berg, S., Fadili, A., Nasralla, R., Voskov, D., Joekar-Niasar, V.
    [2017] Insights into the Impact of Temperature on the Wettability Alteration by Low Salinity in Carbonate Rocks. Energy and Fuels31, 7839–7853. doi:10.1021/acs.energyfuels.7b00776
    https://doi.org/10.1021/acs.energyfuels.7b00776 [Google Scholar]
  25. Marathe, R., Turner, M.L., Fogden, A.
    [2012] Pore-scale distribution of crude oil wettability in carbonate rocks. Energy and Fuels26, 6268–6281. doi:10.1021/ef301088j
    https://doi.org/10.1021/ef301088j [Google Scholar]
  26. Mcguire, P.L.L., Chatham, J.R.R., Paskvan, F.K.K., Sommer, D.M.M., Carini, F.H.H., Exploration, B.P.
    [2005] Low Salinity Oil Recovery: An Exciting New EOR Opportunity for Alaska's North Slope. SPE West. Reg. Meet.1–15. doi:10.2118/93903‑MS
    https://doi.org/10.2118/93903-MS [Google Scholar]
  27. Nasralla, R.A., Linde, H.A. Van Der, Marcelis, F.H.M., Mahani, H., Masalmeh, S.K.
    [2016] SPE-183086-MS Low Salinity Waterflooding for a Carbonate Reservoir Experimental Evaluation and Numerical Interpretation1–20.
    [Google Scholar]
  28. Nasralla, R.A., Sergienko, E., Masalmeh, S.K., van der Linde, H.A., Brussee, N.J., Mahani, H., Suijkerbuijk, B., Alqarshubi, I.
    [2014] Demonstrating the Potential of Low-Salinity Waterflood to Improve Oil Recovery in Carbonate Reservoirs by Qualitative Coreflood. Abu Dhabi Int. Pet. Exhib. Conf. doi:10.2118/172010‑MS
    https://doi.org/10.2118/172010-MS [Google Scholar]
  29. Puntervold, T., Strand, S., Austad, T.
    [2009] Coinjection of seawater and produced water to improve oil recovery from fractured north sea chalk oil reservoirs. Energy and Fuels23, 2527–2536. doi:10.1021/ef801023u
    https://doi.org/10.1021/ef801023u [Google Scholar]
  30. Puntervold, T., Strand, S., Ellouz, R., Austad, T.
    [2015] Modified seawater as a smart EOR fluid in chalk. J. Pet. Sci. Eng.133, 440–443. doi:10.1016/j.petrol.2015.06.034
    https://doi.org/10.1016/j.petrol.2015.06.034 [Google Scholar]
  31. Ravari, R.R.
    [2011]. Water-Based EOR in Limestone by Smart Water A study of surface chemistry. Stavanger, Norway.
    [Google Scholar]
  32. Romanuka, J., Hofman, J., Ligthelm, D.J., Suijkerbuijk, B., Marcelis, F., Oedai, S., Brussee, N., van der Linde, H., Aksulu, H., Austad, T.
    [2012] Low Salinity EOR in Carbonates. SPE Improv. Oil Recover. Symp. doi:10.2118/153869‑MS
    https://doi.org/10.2118/153869-MS [Google Scholar]
  33. Seccombe, J., Lager, A., Jerauld, G., Jhaveri, B., Buikema, T., Bassler, S., Denis, J., Webb, K., Cockin, A., Fueg, E.
    [2010] Demonstration of Low-Salinity EOR at Interwell Scale, Endicott Field, Alaska. SPE Improv. Oil Recover. Symp.2008. doi:10.2118/129692‑MS
    https://doi.org/10.2118/129692-MS [Google Scholar]
  34. Shariatpanahi, S.F., Strand, S., Austad, T.
    [2010] Evaluation of water-based enhanced oil recovery (EOR) by wettability alteration in a low-permeable fractured limestone oil reservoir. Energy and Fuels24, 5997–6008. doi:10.1021/ef100837v
    [Google Scholar]
  35. Shariatpanahi, S.F., Strand, S., Austad, T., Aksulu, H.
    [2012] Wettability restoration of limestone cores using core material from the aqueous zone. Pet. Sci. Technol.30, 1082–1090. doi:10.1080/10916466.2011.569829
    https://doi.org/10.1080/10916466.2011.569829 [Google Scholar]
  36. Sharqawy, M.H., Lienhard V, J.H., Zubair, S.M.
    [2011] Erratum to Thermophysical properties of seawater: A review of existing correlations and data. Desalin. Water Treat.29, 355–355. doi:10.5004/dwt.2011.2947
    https://doi.org/10.5004/dwt.2011.2947 [Google Scholar]
  37. Shehata, A.M., Alotaibi, M.B., Nasr-El-Din, H.A.
    [2014] Waterflooding in Carbonate Reservoirs: Does the Salinity Matter?SPE Reserv. Eval. Eng.17, 304–313. doi:10.2118/170254‑PA
    https://doi.org/10.2118/170254-PA [Google Scholar]
  38. Sheng, J.J.
    [2011] Transport of Chemicals and Fractional Flow Curve Analysis, Modern Chemical Enhanced Oil Recovery. doi:10.1016/B978‑1‑85617‑745‑0.00002‑4
    https://doi.org/10.1016/B978-1-85617-745-0.00002-4 [Google Scholar]
  39. Sohal, M.A., Thyne, G., Søgaard, E.G.
    [2016] Review of Recovery Mechanisms of Ionically Modified Waterflood in Carbonate Reservoirs. Energy and Fuels30, 1904–1914. doi:10.1021/acs.energyfuels.5b02749
    https://doi.org/10.1021/acs.energyfuels.5b02749 [Google Scholar]
  40. Standnes, D.C., Austad, T.
    [2000] Wettability alteration in chalk 1. Preparation of core material and oil properties.
    [Google Scholar]
  41. Steven, G.J.
    [2008] The NLopt nonlinear-optimization package.
    [Google Scholar]
  42. Strand, S., Austad, T., Puntervold, T., Høgnesen, E.
    [2008] “Smart water” for oil recovery from fractured limestone: a preliminary study. Energy & Fuels21, 3126–3133.
    [Google Scholar]
  43. Strand, S., Hjuler, M.L., Torsvik, R., Pedersen, J.I., Madland, M. V., Austad, T.
    [2007]. Wettability of chalk: impact of silica, clay content and mechanical properties. Pet. Geosci.13, 69–80. doi:10.1144/1354‑079305‑696
    https://doi.org/10.1144/1354-079305-696 [Google Scholar]
  44. Strand, S., Høgnesen, E.J., Austad, T.
    [2006a] Wettability alteration of carbonates - Effects of potential determining ions (Ca2+ and SO42-) and temperature. Colloids Surfaces A Physicochem. Eng. Asp.275, 1–10. doi:10.1016/j.colsurfa.2005.10.061
    https://doi.org/10.1016/j.colsurfa.2005.10.061 [Google Scholar]
  45. Strand, S., Standnes, D.C., Austad, T.
    [2006b] New wettability test for chalk based on chromatographic separation of SCN- and SO42-. J. Pet. Sci. Eng.52, 187–197. doi:10.1016/j.petrol.2006.03.021
    https://doi.org/10.1016/j.petrol.2006.03.021 [Google Scholar]
  46. Taheriotaghsara, M., Bonto, M., Eftekhari, A.A., Nick, H.M.
    [2019] Towards Identifying the Mechanisms of the Modified-Salinity Waterflooding by a Novel Combination of Core flooding and Mathematical Modeling. Soc. Pet. Eng. - Middle East oil gas show Conf.
    [Google Scholar]
  47. Webb, K.J., Black, C.J.J.
    [2003] Low Salinity Oil Recovery–Log-Inject-Log. Soc. Pet. Eng.
    [Google Scholar]
  48. Yousef, A.A., Al-Saleh, S., Al-Jawfi, M.
    [2011] New recovery method for carbonate reservoirs through tuning the injection water salinity: Smart WaterFlooding. 73rd Eur. Assoc. Geosci. Eng. Conf. Exhib. 2011 Unconv. Resour. Role Technol. Inc. SPE Eur. 20114, 2814–2830. doi:10.2118/143550‑MS
    https://doi.org/10.2118/143550-MS [Google Scholar]
  49. Yousef, A.A., Al-Saleh, S., Al-Kaabi, A.U., Al-Jawfi, M.S.
    [2010] Laboratory Investigation of Novel Oil Recovery Method for Carbonate Reservoirs. Can. Unconv. Resour. Int. Pet. Conf.1–35. doi:10.2118/137634‑MS
    https://doi.org/10.2118/137634-MS [Google Scholar]
  50. Zahid, A., Bülow, S., Stenby, E.H., Solms, N. Von, Shapiro, A.
    [2011] Advanced waterflooding in chalk reservoirs?: Understanding of underlying mechanisms. Colloids Surfaces A Physicochem. Eng. Asp.389, 281–290. doi:10.1016/j.colsurfa.2011.08.009
    https://doi.org/10.1016/j.colsurfa.2011.08.009 [Google Scholar]
  51. Zahid, A., Shapiro, A.A., Skauge, A.
    [2012] Experimental Studies of Low Salinity Water Flooding Carbonate: A New Promising Approach, in: SPE EOR Conference at Oil and Gas West Asia. Society of Petroleum Engineers, pp. 1–14. doi:10.2118/155625‑MS
    https://doi.org/10.2118/155625-MS [Google Scholar]
  52. Zhang, P., Tweheyo, M.T., Austad, T.
    [2007] Wettability alteration and improved oil recovery by spontaneous imbibition of seawater into chalk: Impact of the potential determining ions Ca2+, Mg2+, and SO42-. Colloids Surfaces A Physicochem. Eng. Asp. 301, 199–208. doi:10.1016/j.colsurfa.2006.12.058
    https://doi.org/10.1016/j.colsurfa.2006.12.058 [Google Scholar]
  53. [2006] Wettability alteration and improved oil recovery in chalk: The effect of calcium in the presence of sulfate. Energy and Fuels20, 2056–2062. doi:10.1021/ef0600816
    https://doi.org/10.1021/ef0600816 [Google Scholar]
http://instance.metastore.ingenta.com/content/papers/10.3997/2214-4609.201900071
Loading
/content/papers/10.3997/2214-4609.201900071
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error