1887

Abstract

Summary

The fines migration is one of the most reported mechanisms for the improved oil recovery during low salinity waterflooding in sandstone reservoirs. However, the release of particles and its effect on the recovery of oil from carbonates has received less attention and in this work, we emphasize its role. When injecting a brine incompatible with the formation water, different phases can precipitate which can also lead to more calcite dissolution, releasing some particles from the surface. These particles, together with the detachment of organic layers from the rock surface or the migration of clay minerals present in the formation, can be retained blocking some pore throats and diverting the flow of water to different zones, increasing the sweep efficiency. In the present paper, we first study the mechanical equilibrium of a particle by considering DLVO, drag, lift and gravitational forces, validating the fines migration inferred experimentally from the pressure drop increase for a set of coreflooding experiments. We show that particle detachment occurs also in carbonates when the salinity drops below a certain value. Then, we model the fines migration based on the concept of the so-called critical retention function. Our approach is different from the previous reported models, since we calculate this function from the balance of forces, and not taking it as a constant deduced from pressure drop measurements. Using a constant critical retention function would imply that the electrostatic forces do not change along the core/reservoir, which is definitely not the case for chalk reservoirs, where the calcite minerals are highly reactive. To account for the changes in the electrostatic repulsive forces and therefore in the critical retention function, we couple a CD-MUSIC surface complexation model to our model for fines release. Therefore, at each core position we are able to calculate the critical retention function by considering variables like the ionic strength, pH, pCO2, all of them affecting the electrostatic forces. The main novelty of this work is the coupling of our optimized surface complexation model with the fluid flow, which allows us to better estimate the electrostatic forces, and consequently the critical retention function that will eventually govern the amount of particle released or reattached. With this model, we are able to predict the critical salinity at which fines migration occurs, the transport and capture of the particles, their impact on the effective permeability of water, and the pressure drop profile during low salinity waterflooding.

Loading

Article metrics loading...

/content/papers/10.3997/2214-4609.201900077
2019-04-08
2024-04-25
Loading full text...

Full text loading...

References

  1. Al-Sarihi, A., Zeinijahromi, A., Genolet, L., Behr, A., Kowollik, P., Bedrikovetsky, P.
    , [2018]. Effects of Fines Migration on Residual Oil during Low-Salinity Waterflooding. Energy & Fuels32, 8296–8309. doi:10.1021/acs.energyfuels.8b01732
    https://doi.org/10.1021/acs.energyfuels.8b01732 [Google Scholar]
  2. Altahir, M., Yu, M., Hussain, F.
    , [2017]. Low Salinity Water Flooding In Carbonate Rocks–Dssolution Effect. Presented at the International Symposium of the Society of Core Analysts held in Vienna, Austria SCA2017-070.
    [Google Scholar]
  3. Al-Yaseri, A., Al Mukainah, H., Lebedev, M., Barifcani, A., Iglauer, S.
    , [2016]. Impact of fines and rock wettability on reservoir formation damage. Geophysical Prospecting64, 860–874. doi:10.1111/1365‑2478.12379
    https://doi.org/10.1111/1365-2478.12379 [Google Scholar]
  4. Barenblatt, G.I., Entov, V.M., Ryzhik, V.M.
    , [1990]. Theory of Fluid Flows Through Natural Rocks | G.I. Barenblatt | Springer. Springer.
    [Google Scholar]
  5. Bedrikovetsky, P., Siqueira, F.D., Furtado, C.A., Souza, A.L.S.
    , [2011]. Modified Particle Detachment Model for Colloidal Transport in Porous Media. Transport in Porous Media86, 353–383. doi:10.1007/s11242‑010‑9626‑4
    https://doi.org/10.1007/s11242-010-9626-4 [Google Scholar]
  6. Bedrikovetsky, P., Zeinijahromi, A., Siqueira, F.D., Furtado, C.A., de Souza, A.L.S.
    , [2012]. Particle Detachment Under Velocity Alternation During Suspension Transport in Porous Media. Transport in Porous Media91, 173–197. doi:10.1007/s11242‑011‑9839‑1
    https://doi.org/10.1007/s11242-011-9839-1 [Google Scholar]
  7. Bezanson, J., Edelman, A., Karpinski, S., Shah, V.B.
    , [2017]. Julia: A Fresh Approach to Numerical Computing. SIAM Review59, 65–98. doi:10.1137/141000671
    https://doi.org/10.1137/141000671 [Google Scholar]
  8. Borazjani, S., Behr, A., Genolet, L., van der Net, A., Bedrikovetsky, P.
    , [2017]. Effects of Fines Migration on Low-Salinity Waterflooding: Analytical Modelling. Transp Porous Med116, 213–249. doi:10.1007/s11242‑016‑0771‑2
    https://doi.org/10.1007/s11242-016-0771-2 [Google Scholar]
  9. Carlberg, B.L.
    , [1973]. Solubility of Calcium Sulfate in Brine. Presented at the SPE Oilfield Chemistry Symposium, Society of Petroleum Engineers. doi:10.2118/4353‑MS
    https://doi.org/10.2118/4353-MS [Google Scholar]
  10. Chakravarty, K.H., Fosbøl, P.L., Thomsen, K.
    , [2015]. Interactions of Fines with Base Fractions of Oil and its Implication in Smart Water Flooding. Presented at the EUROPEC 2015, Society of Petroleum Engineers. doi:10.2118/174335‑MS
    https://doi.org/10.2118/174335-MS [Google Scholar]
  11. Chen, S.-Y., Kaufman, Y., Kristiansen, K., Seo, D., Schrader, A.M., Alotaibi, M.B., Dobbs, H.A., Cadirov, N.A., Boles, J.R., Ayirala, S.C., Israelachvili, J.N., Yousef, A.A.
    , [2017]. Effects of Salinity on Oil Recovery (the “Dilution Effect”): Experimental and Theoretical Studies of Crude Oil/Brine/Carbonate Surface Restructuring and Associated Physicochemical Interactions. Energy & Fuels31, 8925–8941. doi:10.1021/acs.energyfuels.7b00869
    https://doi.org/10.1021/acs.energyfuels.7b00869 [Google Scholar]
  12. Coronado, M., Díaz-Viera, M.A.
    , [2017]. Modeling fines migration and permeability loss caused by low salinity in porous media. Journal of Petroleum Science and Engineering150, 355–365. doi:10.1016/j.petrol.2016.12.021
    https://doi.org/10.1016/j.petrol.2016.12.021 [Google Scholar]
  13. Eftekhari, A.A.
    , [2017]. simulkade/JFVM.jl: JFVM.jl: A Finite Volume Tool for Solving Advection-Diffusion Equations. doi:10.5281/zenodo.847056
    https://doi.org/10.5281/zenodo.847056 [Google Scholar]
  14. , [2016]. JPhreeqc.jl GitHub. URL https://github.com/simulkade/JPhreeqc.jl
    [Google Scholar]
  15. Eftekhari, A.A., Nick, H., Bonto, M.
    , [2018]. An Overview of the Thermodynamic Models for the Chalk Surface Reactions with Brine. Presented at the 80th EAGE Conference and Exhibition 2018. doi:10.3997/2214‑4609.201800760
    https://doi.org/10.3997/2214-4609.201800760 [Google Scholar]
  16. Eftekhari, A.A., Thomsen, K., Stenby, E.H., Nick, H.M.
    , [2017]. Thermodynamic Analysis of Chalk–Brine–Oil Interactions. Energy & Fuels31, 11773–11782. doi:10.1021/acs.energyfuels.7b02019
    https://doi.org/10.1021/acs.energyfuels.7b02019 [Google Scholar]
  17. Fabricius, I.L., Gommesen, L., Krogsbøll, A., Olsen, D.
    , [2008]. Chalk porosity and sonic velocity versus burial depth: Influence of fluid pressure, hydrocarbons, and mineralogy. AAPG Bulletin92, 201–223. doi:10.1306/10170707077
    https://doi.org/10.1306/10170707077 [Google Scholar]
  18. Goldberg, S. et al.
    , [2007]. Adsorption–Desorption Processes in Subsurface Reactive Transport Modeling. www.vadosezjournal.org 6.
    [Google Scholar]
  19. Hiemstra, T., van Riemsdijk, W.H.
    , [1996]. A Surface Structural Approach to Ion Adsorption: The Charge Distribution (CD) Model. Journal of Colloid and Interface Science179, 488–508. doi:10.1006/jcis.1996.0242
    https://doi.org/10.1006/jcis.1996.0242 [Google Scholar]
  20. Hirasaki, G.J.
    , [1991]. Wettability: Fundamentals and Surface Forces - SPE Formation Evaluation, 6(2)
    [Google Scholar]
  21. Hjuler, M.L., Fabricius, I.L.
    , [2009]. Engineering properties of chalk related to diagenetic variations of Upper Cretaceous onshore and offshore chalk in the North Sea area. Journal of Petroleum Science and Engineering68, 151–170. doi:10.1016/j.petrol.2009.06.005
    https://doi.org/10.1016/j.petrol.2009.06.005 [Google Scholar]
  22. Israelachvili, J.N.
    , [2011]. Intermolecular and Surface Forces, Third Edition. ed. Elsevier. doi:10.1016/C2011‑0‑05119‑0
    https://doi.org/10.1016/C2011-0-05119-0 [Google Scholar]
  23. Izgec, O., Demiral, B., Bertin, H., Akin, S.
    , [2008]. CO2 injection into saline carbonate aquifer formations I: laboratory investigation. Transport in Porous Media72, 1–24. doi:10.1007/s11242‑007‑9132‑5
    https://doi.org/10.1007/s11242-007-9132-5 [Google Scholar]
  24. Jiang, K., Pinchuk, P.
    , [2016]. Temperature and size-dependent Hamaker constants for metal nanoparticles. Nanotechnology27, 345710. doi:10.1088/0957‑4484/27/34/345710
    https://doi.org/10.1088/0957-4484/27/34/345710 [Google Scholar]
  25. Karazincir, O., Williams, W., Rijken, P.
    , [2017]. Prediction of Fines Migration through Core Testing, in: SPE Annual Technical Conference and Exhibition. Presented at the SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers, San Antonio, Texas, USA. doi:10.2118/187157‑MS
    https://doi.org/10.2118/187157-MS [Google Scholar]
  26. Katika, K., Alam, M.M., Alexeev, A., Chakravarty, K.H., Fosbøl, P.L., Revil, A., Stenby, E., Xiarchos, I., Yousefi, A., Fabricius, I.L.
    , [2018]. Elasticity and electrical resistivity of chalk and greensand during water flooding with selective ions. Journal of Petroleum Science and Engineering161, 204–218. doi:10.1016/j.petrol.2017.11.045
    https://doi.org/10.1016/j.petrol.2017.11.045 [Google Scholar]
  27. Khilar, K.C., Vaidya, R.N., Fogler, H.S.
    , [1990]. Colloidally-induced fines release in porous media. Journal of Petroleum Science and Engineering4, 213–221. doi:10.1016/0920‑4105(90)90011‑Q
    https://doi.org/10.1016/0920-4105(90)90011-Q [Google Scholar]
  28. Kia, S.F., Fogler, H.S., Reed, M.G.
    , [1987]. Effect of pH on colloidally induced fines migration. Journal of Colloid and Interface Science118, 158–168. doi:10.1016/0021‑9797(87)90444‑9
    https://doi.org/10.1016/0021-9797(87)90444-9 [Google Scholar]
  29. Kia, S. F., Fogler, H.S., Reed, M.G., Vaidya, R.N.
    , [1987]. Effect of Salt Composition on Clay Release in Berea Sandstones. SPE Production Engineering7.
    [Google Scholar]
  30. Lomando, A.
    , [1986]. Solid Hydrocarbon - A migration-of-fines problem in carbonate reservoirs. Aapg Bulletin-american Association of Petroleum Geologists70, 612–613.
    [Google Scholar]
  31. Madland, M.V., Hiorth, A., Omdal, E., Megawati, M., Hildebrand-Habel, T., Korsnes, R.I., Evje, S., Cathles, L.M.
    , [2011]. Chemical Alterations Induced by Rock–Fluid Interactions When Injecting Brines in High Porosity Chalks. Transport in Porous Media87, 679–702. doi:10.1007/s11242‑010‑9708‑3
    https://doi.org/10.1007/s11242-010-9708-3 [Google Scholar]
  32. Madland, M.V., Midtgarden, K., Manafov, R., Korsnes, R.I., Kristiansen, T.G., Hiorth, A.
    , [2008]. 2008: The Effect of Temperature and Brine Composition on The Mechanical Strength of Kansas Chalk. International Symposium of the Society of Core Analysts held in Abu Dhabi, UAE SCA2008-55.
    [Google Scholar]
  33. Oliveira, M.A., Vaz, A.S.L., Siqueira, F.D., Yang, Y., You, Z., Bedrikovetsky, P.
    , [2014]. Slow migration of mobilised fines during flow in reservoir rocks: Laboratory study. Journal of Petroleum Science and Engineering122, 534–541. doi:10.1016/j.petrol.2014.08.019
    https://doi.org/10.1016/j.petrol.2014.08.019 [Google Scholar]
  34. Parkhurst, D.L., Wissmeier, L.
    , [2015]. PhreeqcRM: A reaction module for transport simulators based on the geochemical model PHREEQC. Advances in Water Resources83, 176–189.
    [Google Scholar]
  35. Pu, H., Xie, X., Yin, P., Morrow, N.R.
    , [2010]. Low-Salinity Waterflooding and Mineral Dissolution. Presented at the SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers. doi: 10.2118/134042‑MS
    https://doi.org/10.2118/134042-MS [Google Scholar]
  36. Purswani, P., Karpyn, Z.T.
    , [2019]. Laboratory investigation of chemical mechanisms driving oil recovery from oil-wet carbonate rocks. Fuel235, 406–415. doi:10.1016/j.fuel.2018.07.078
    https://doi.org/10.1016/j.fuel.2018.07.078 [Google Scholar]
  37. Qajar, J., Francois, N., Arns, C.H.
    , [2013]. Microtomographic Characterization of Dissolution-Induced Local Porosity Changes Including Fines Migration in Carbonate Rock. SPE Journal18, 545–562. doi: 10.2118/153216‑PA
    https://doi.org/10.2118/153216-PA [Google Scholar]
  38. Rahimpour-Bonab, H., Esrafili-Dizaji, B., Tavakoli, V.
    , [2010]. Dolomitization and Anhydrite Precipitation in Permo-Triassic Carbonates at the South Pars Gasfield, Offshore Iran: Controls on Reservoir Quality. Journal of Petroleum Geology33, 43–66. doi: 10.1111/j.1747‑5457.2010.00463.x
    https://doi.org/10.1111/j. 1747-5457.2010.00463.x [Google Scholar]
  39. Rosenbrand, E., Kjøller, C, Riis, J.F., Kets, F., Fabricius, I.L.
    , [2015]. Different effects of temperature and salinity on permeability reduction by fines migration in Berea sandstone. Geothermics53, 225–235. doi:10.1016/j.geothermics.2014.06.004
    https://doi.org/10.1016/j.geothermics.2014.06.004 [Google Scholar]
  40. Russell, T., Bedrikovetsky, P.
    , [2018]. Colloidal-suspension flows with delayed fines detachment: Analytical model & laboratory study. Chemical Engineering Science190, 98–109. doi:10.1016/j.ces.2018.05.062
    https://doi.org/10.1016/j.ces.2018.05.062 [Google Scholar]
  41. Russell, T., Pham, D., Neishaboor, M.T., Badalyan, A., Behr, A., Genolet, L., Kowollik, P., Zeinijahromi, A., Bedrikovetsky, P.
    , [2017]. Effects of kaolinite in rocks on fines migration. Journal of Natural Gas Science and Engineering45, 243–255. doi:10.1016/j.jngse.2017.05.020
    https://doi.org/10.1016/j.jngse.2017.05.020 [Google Scholar]
  42. Sarkar, A.K., Sharma, M.M.
    , [1990]. Fines Migration in Two-Phase Flow. Journal of Petroleum Technology42, 646–652. doi: 10.2118/17437‑PA
    https://doi.org/10.2118/17437-PA [Google Scholar]
  43. Sharma, M.M., Yortsos, Y.C.
    , [1987]. Fines migration in porous media. AIChE Journal33, 1654–1662. doi:10.1002/aic.690331009
    https://doi.org/10.1002/aic.690331009 [Google Scholar]
  44. Sø, H.U., Postma, D., Jakobsen, R, Larsen, F.
    , [2011]. Sorption of phosphate onto calcite; results from batch experiments and surface complexation modeling. Geochimica et Cosmochimica Acta75, 2911–2923. doi: 10.1016/j.gca.2011.02.031
    https://doi.org/10.1016/j.gca.2011.02.031 [Google Scholar]
  45. Strand, S., Henningsen, S.C., Puntervold, T., Austad, T.
    , [2017]. Favorable Temperature Gradient for Maximum Low-Salinity Enhanced Oil Recovery Effects in Carbonates. Energy & Fuels31, 4687–4693. doi:10.1021/acs.energyfuels.6b03019
    https://doi.org/10.1021/acs.energyfuels.6b03019 [Google Scholar]
  46. Strand, S., Hjuler, M.L., Torsvik, R, Pedersen, J.I., Madland, M.V., Austad, T.
    , [2007]. Wettability of chalk: impact of silica, clay content and mechanical properties. Petroleum Geoscience13, 69–80. doi: 10.1144/1354‑079305‑696
    https://doi.org/10.1144/1354-079305-696 [Google Scholar]
  47. Tang, G.-Q., Morrow, N.R
    , [1999]. Influence of brine composition and fines migration on crude oilrbrinerrock interactions and oil recovery13.
    [Google Scholar]
  48. Vaz, A., Maffra, D., Carageorgos, T., Bedrikovetsky, P.
    , [2016]. Characterisation of formation damage during reactive flows in porous media. Journal of Natural Gas Science and Engineering34, 1422–1433. doi:10.1016/j.jngse.2016.08.016
    https://doi.org/10.1016/j.jngse.2016.08.016 [Google Scholar]
  49. Wolthers, M., Charlet, L., van Cappellen, P.
    , [2008]. The surface chemistry of divalent metal carbonate minerals; a critical assessment of surface charge and potential data using the charge distribution multi-site ion complexation model. American Journal of Science308, 905–941. doi: 10.2475/08.2008.02
    https://doi.org/10.2475/08.2008.02 [Google Scholar]
  50. Y.Sazali, Gödeke, S., Sazali, W.L., Ibrahim, J.M., Graham, G.M., Kidd, S.L., Ohen, H.A.
    , [2018]. Fines Migration during CO2 Saturated Brine Flow in Carbonate Reservoirs with Some Migratory Clay Minerals - The Malaysian Formations. Presented at the SPE International Conference and Exhibition on Formation Damage Control, Society of Petroleum Engineers. doi: 10.2118/189569‑MS
    https://doi.org/10.2118/189569-MS [Google Scholar]
  51. Yang, Y., Siqueira, F.D., Vaz, A.S.L., You, Z., Bedrikovetsky, P.
    , [2016]. Slow migration of detached fine particles over rock surface in porous media. Journal of Natural Gas Science and Engineering34, 1159–1173. doi:10.1016/j.jngse.2016.07.056
    https://doi.org/10.1016/j.jngse.2016.07.056 [Google Scholar]
  52. Yuan, H., Shapiro, A.A.
    , [2011]. Induced migration of fines during waterflooding in communicating layer-cake reservoirs. Journal of Petroleum Science and Engineering78, 618–626. doi:10.1016/j.petrol.2011.08.003
    https://doi.org/10.1016/j.petrol.2011.08.003 [Google Scholar]
  53. Zahid, A., Shapiro, A.
    , [2012]. Experimental Studies of Low Salinity Water Flooding in Carbonate Reservoirs: A New Promising Approach. SPE EOR Conference at Oil and Gas West Asia, Oman835–848.
    [Google Scholar]
  54. Zahid, A., Shapiro, A.A., Skauge, A.
    , [2012]. Experimental Studies of Low Salinity Water Flooding Carbonate: A New Promising Approach. Presented at the SPE EOR Conference at Oil and Gas West Asia, Society of Petroleum Engineers. doi:10.2118/155625‑MS
    https://doi.org/10.2118/155625-MS [Google Scholar]
  55. Zeinijahromi, A., Lemon, P., Bedrikovetsky, P.
    , [2011]. Effects of induced fines migration on water cut during waterflooding. Journal of Petroleum Science and Engineering78, 609–617. doi:10.1016/j.petrol.2011.08.005
    https://doi.org/10.1016/j.petrol.2011.08.005 [Google Scholar]
  56. Zhang, P., Tweheyo, M.T., Austad, T.
    , [2007]. Wettability alteration and improved oil recovery by spontaneous imbibition of seawater into chalk: Impact of the potential determining ions Ca2+, Mg2+, and SO42-. Colloids and Surfaces A: Physicochemical and Engineering Aspects301, 199–208. doi:10.1016/j.colsurfa.2006.12.058
    https://doi.org/10.1016/j.colsurfa.2006.12.058 [Google Scholar]
  57. , [2006]. Wettability Alteration and Improved Oil Recovery in Chalk: The Effect of Calcium in the Presence of Sulfate. Energy & Fuels20, 2056–2062. doi:10.1021/ef0600816
    https://doi.org/10.1021/ef0600816 [Google Scholar]
http://instance.metastore.ingenta.com/content/papers/10.3997/2214-4609.201900077
Loading
/content/papers/10.3997/2214-4609.201900077
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error