1887
Volume 31, Issue 4
  • E-ISSN: 1365-2117

Abstract

Abstract

The Andean Plateau of NW Argentina is a prominent example of a high‐elevation orogenic plateau characterized by internal drainage, arid to hyper‐arid climatic conditions and a compressional basin‐and‐range morphology comprising thick sedimentary basins. However, the development of the plateau as a geomorphic entity is not well understood. Enhanced orographic rainout along the eastern, windward plateau flank causes reduced fluvial run‐off and thus subdued surface‐process rates in the arid hinterland. Despite this, many Puna basins document a complex history of fluvial processes that have transformed the landscape from aggrading basins with coalescing alluvial fans to the formation of multiple fluvial terraces that are now abandoned. Here, we present data from the San Antonio de los Cobres (SAC) area, a sub‐catchment of the Salinas Grandes Basin located on the eastern Puna Plateau bordering the externally drained Eastern Cordillera. Our data include: (a) new radiometric U‐Pb zircon data from intercalated volcanic ash layers and detrital zircons from sedimentary key horizons; (b) sedimentary and geochemical provenance indicators; (c) river profile analysis; and (d) palaeo‐landscape reconstruction to assess aggradation, incision and basin connectivity. Our results suggest that the eastern Puna margin evolved from a structurally controlled intermontane basin during the Middle Miocene, similar to intermontane basins in the Mio‐Pliocene Eastern Cordillera and the broken Andean foreland. Our refined basin stratigraphy implies that sedimentation continued during the Late Mio‐Pliocene and the Quaternary, after which the SAC area was subjected to basin incision and excavation of the sedimentary fill. Because this incision is unrelated to baselevel changes and tectonic processes, and is similar in timing to the onset of basin fill and excavation cycles of intermontane basins in the adjacent Eastern Cordillera, we suspect a regional climatic driver, triggered by the Mid‐Pleistocene Climate Transition, caused the present‐day morphology. Our observations suggest that lateral orogenic growth, aridification of orogenic interiors, and protracted plateau sedimentation are all part of a complex process chain necessary to establish and maintain geomorphic characteristics of orogenic plateaus in tectonically active mountain belts.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12346
2019-03-29
2024-04-19
Loading full text...

Full text loading...

References

  1. Acocella, V., Gioncada, A., Omarini, R., Riller, U., Mazzuoli, R., & Vezzoli, L. (2011). Tectono‐magmatic characteristics of the Calama‐Olacapato‐El Toro Fault Zone (Puna and Eastern Cordillera), Central Andes. Tectonics, 30, 808–826. http://doi.org/10.1029/2010TC002854
    [Google Scholar]
  2. Allen, M. B., Saville, C., Blanc, E. J.‐P., Talebian, M., & Nissen, E. (2013). Orogenic plateau growth: Expansion of the Turkish‐Iranian Plateau across the Zagros fold‐and‐thrust belt. Tectonics, 32(2), 171–190. https://doi.org/10.1002/tect.20025
    [Google Scholar]
  3. Alonso, R. N., Bookhagen, B., Carrapa, B., Coutand, I., Haschke, M., Hilley, G. E., … Villanueva, A. (2006). Tectonics, climate, and landscape evolution of the southern Central Andes: The Argentine Puna Plateau and adjacent regions between 22 and 30°S. In O.Oncken, G.Chong, G.Franz, P.Giese, H.-J.Götze, V. A.Ramos, et al. (Eds.), The Andes (pp. 265–283). Berlin Heidelberg: Springer. https://doi.org/10.1007/978-3-540-48684-8_12
    [Google Scholar]
  4. Alonso, R. N., Gutiérrez, R., & Viramonte, J. (1984). Megacuerpos salinos cenozoicos de la Puna Argentina(Vol. 1, pp. 25–42). Presented at the IX Congreso Geológico Argentino, IX Congreso Geológico Argentino.
  5. Alonso, R. N., Jordan, T. E., Tabbutt, K. T., & Vandervoort, D. S. (1991). Giant evaporite belts of the Neogene central Andes. Geology, 19(4), 401–404. https://doi.org/10.1130/0091-7613(1991)019<0401:GEBOTN>2.3.CO;2
    [Google Scholar]
  6. Andriessen, P. A. M., & Reutter, K. J. (1994). K‐Ar and Fission Track Mineral Age Determination of Igneous Rocks Related to Multiple Magmatic Arc Systems Along the 23°S Latitude of Chile and NW Argentina. In K.-J.Reutter, E.Scheuber, & P. J.Wigger (Eds.), Tectonics of the Southern Central Andes (pp. 141–153). Berlin Heidelberg: Springer. https://doi.org/10.1007/978-3-642-77353-2_10
    [Google Scholar]
  7. Aquater
    Aquater . (1980). Exploración Geotérmica del cerro Tuzgle, provincia de Jujuy, República Argentina (pp. 808–115). Buenos Aires, Argentina: Secretaría de Energía de la Nación.
    [Google Scholar]
  8. Ballato, P., Brune, S., & Strecker, M. R. (2019). Sedimentary loading–unloading cycles and faulting in intermontane basins: Insights from numerical modeling and field observations in the NW Argentine Andes. Earth and Planetary Science Letters, 506, 388–396.
    [Google Scholar]
  9. Ballato, P., Stockli, D. F., Ghassemi, M. R., Landgraf, A., Strecker, M. R., Hassanzadeh, J., … Tabatabaei, S. H. (2013). Accommodation of transpressional strain in the Arabia‐Eurasia collision zone: New constraints from (U‐Th)/He thermochronology in the Alborz mountains, north Iran. Tectonics, 32(1), 808–18. https://doi.org/10.1029/2012TC003159
    [Google Scholar]
  10. Berger, A., Li, X. S., & Loutre, M. F. (1999). Modelling northern hemisphere ice volume over the last 3 Ma. Quaternary Science Reviews, 18(1), 808–11.
    [Google Scholar]
  11. Bianchi, A. R., & Yañez, C. E. (1992). Las precipitaciones en el Noroeste Argentino, 2nd ed. Salta, Argentina: Instituto Nacional de Tecnologia Agropecuaria, Estacíon Experimental Agropecuaria Salta.
    [Google Scholar]
  12. Blasco, G., & Zappettini, E. (1996). Hoja geológica San Antonio de los Cobres. 2566‐1, Programa Nacional de Cartas Geológicas 1:250.000(Vol. 217). Servicio Geológico Minero Argentino.
  13. Bookhagen, B., & Burbank, D. W. (2006). Topography, relief, and TRMM‐derived rainfall variations along the Himalaya. Geophysical Research Letters, 33(8), 808–5. https://doi.org/10.1029/2006GL026037
    [Google Scholar]
  14. Bookhagen, B., & Strecker, M. R. (2008). Orographic barriers, high‐resolution TRMM rainfall, and relief variations along the eastern Andes. Geophysical Research Letters, 35, L06403. https://doi.org/10.1029/2007GL032011
    [Google Scholar]
  15. Bookhagen, B., & Strecker, M. R. (2012). Spatiotemporal trends in erosion rates across a pronounced rainfall gradient: Examples from the southern Central Andes. Earth and Planetary Science Letters, 327–328, 97–110. https://doi.org/10.1016/j.epsl.2012.02.005
    [Google Scholar]
  16. Broccoli, A. J., Dahl, K. A., & Stouffer, R. J. (2006). Response of the ITCZ to Northern Hemisphere cooling. Geophysical Research Letters, 33(1), 808–4. https://doi.org/10.1029/2005GL024546
    [Google Scholar]
  17. Carroll, A. R., Graham, S. A., & Smith, M. E. (2010). Walled sedimentary basins of China. Basin Research, 22(1), 17–32. https://doi.org/10.1111/j.1365-2117.2009.00458.x
    [Google Scholar]
  18. Coutand, I., Carrapa, B., Deeken, A., Schmitt, A. K., Sobel, E. R., & Strecker, M. R. (2006). Propagation of orographic barriers along an active range front: Insights from sandstone petrography and detrital apatite fission‐track thermochronology in the intramontane Angastaco basin, NW Argentina. Basin Research, 18(1), 808–26. https://doi.org/10.1111/j.1365-2117.2006.00283.x
    [Google Scholar]
  19. Coutand, I., Cobbold, P. R., de Urreiztieta, M., Gautier, P., Chauvin, A., Gapais, D., … López‐Gamundí, O. (2001). Style and history of Andean deformation, Puna plateau, northwestern Argentina. Tectonics, 20(2), 210–234. https://doi.org/10.1029/2000TC900031
    [Google Scholar]
  20. DeCelles, P. G., Carrapa, B., Horton, B. K., & Gehrels, G. E. (2011). Cenozoic foreland basin system in the central Andes of northwestern Argentina: Implications for Andean geodynamics and modes of deformation. Tectonics, 30(TC6013), TC6013. https://doi.org/10.1029/2011TC002948
    [Google Scholar]
  21. Deeken, A., Sobel, E. R., Coutand, I., Haschke, M., Riller, U., & Strecker, M. R. (2006). Development of the southern Eastern Cordillera, NW Argentina, constrained by apatite fission track thermochronology: From early Cretaceous extension to middle Miocene shortening. Tectonics, 25, 808–21. https://doi.org/10.1029/2005TC001894
    [Google Scholar]
  22. Deeken, A., Sobel, E. R., Haschke, M., & Riller, U. (2005). Age of initiation and growth pattern of the Puna plateau, NW‐Argentina, constrained by AFT thermochronology. 19th Colloquium on Latin American Geosciences, Abstract Volume Terra Nostra, 5(1), 39.
    [Google Scholar]
  23. Déruelle, B. (1991). Petrology of Quaternary shoshonitic lavas of northwestern Argentina. Geological Society of America Special Papers, 265, 201–216.
    [Google Scholar]
  24. Fielding, E., Isacks, B. L., Barazangi, M., & Duncan, C. (1994). How flat is Tibet?Geology, 22(2), 163.
    [Google Scholar]
  25. Flint, J. J. (1974). Stream gradient as a function of order, magnitude, and discharge. Water Resources Research, 10(5), 969–973. https://doi.org/10.1029/WR010i005p00969
    [Google Scholar]
  26. Galli, C. I., Coira, B., Alonso, R. N., Reynolds, J. H., Matteini, M., & Hauser, N. (2014). Tectonic controls on the evolution of the Andean Cenozoic foreland basin: Evidence from fluvial system variations in the Payogastilla Group, in the Calchaquí, Tonco and Amblayo Valleys, NW Argentina. Journal of South American Earth Sciences, 52(C), 234–259. https://doi.org/10.1016/j.jsames.2014.03.003
    [Google Scholar]
  27. Gangui, A. H. (1998). A combined Structural Interpretation based on Seismic Data and 3‐D Gravity Modeling in the Northern Puna/Eastern Cordillera, Argentina, 1st ed., Vol. Reihe B. Berlin, Germany: Selbstverlag Fachbereich Geowissenschaften, FU Berlin.
    [Google Scholar]
  28. García‐Castellanos, D. (2007). The role of climate during high plateau formation. Insights from numerical experiments. Earth and Planetary Science Letters, 257(3–4), 372–390. https://doi.org/10.1016/j.epsl.2007.02.039
    [Google Scholar]
  29. Gubbels, T. L., Isacks, B. L., & Farrar, E. (1993). High‐level surfaces, plateau uplift, and foreland development, Bolivian central Andes. Geology, 21, 695–698.
    [Google Scholar]
  30. Hain, M. P., Strecker, M. R., Bookhagen, B., Alonso, R. N., Pingel, H., & Schmitt, A. K. (2011). Neogene to Quaternary broken foreland formation and sedimentation dynamics in the Andes of NW Argentina (25 S). Tectonics, 30, 808–27. https://doi.org/10.1029/2010TC002703
    [Google Scholar]
  31. Haselton, K., Hilley, G., & Strecker, M. R. (2002). Average Pleistocene climatic patterns in the southern Central Andes: Controls on mountain glaciation and paleoclimate implications. The Journal of Geology, 110(2), 211–226.
    [Google Scholar]
  32. Heidarzadeh, G., Ballato, P., Hassanzadeh, J., Ghassemi, M. R., & Strecker, M. R. (2017). Lake overspill and onset of fluvial incision in the Iranian Plateau: Insights from the Mianeh Basin. Earth and Planetary Science Letters, 469, 135–147. https://doi.org/10.1016/j.epsl.2017.04.019
    [Google Scholar]
  33. Hilley, G. E., & Strecker, M. R. (2005). Processes of oscillatory basin filling and excavation in a tectonically active orogen: Quebrada del Toro Basin, NW Argentina. Geological Society of America Bulletin, 117(7–8), 887–901. https://doi.org/10.1130/1325602.1
    [Google Scholar]
  34. Hongn, F. D., del Papa, C. E., Powell, J., Petrinovic, I., Mon, R., & Deraco, V. (2007). Middle Eocene deformation and sedimentation in the Puna‐Eastern Cordillera transition (23–26 S): Control by preexisting heterogeneities on the pattern of initial Andean shortening. Geology, 35(3), 271–274. https://doi.org/10.1130/G23189A.1
    [Google Scholar]
  35. Jirón, R. L. (2015). Interactions of tectonics, climate, and deposition in intermontane basins on the margin of the Puna Plateau, NW Argentina. Santa Barbara, CA: University of California Santa Barbara.
    [Google Scholar]
  36. Jordan, T. E., & Alonso, R. N. (1987). Cenozoic Stratigraphy and Basin Tectonics of the Andes Mountains, 20–28 South Latitude. AAPG Bulletin, 71(1), 49–64. https://doi.org/10.1306/94886D44-1704-11D7-8645000102C1865D
    [Google Scholar]
  37. Kay, S. M., Coira, B. L., Caffe, P. J., & Chen, C.‐H. (2010). Regional chemical diversity, crustal and mantle sources and evolution of central Andean Puna plateau ignimbrites. Journal of Volcanology and Geothermal Research, 198(1–2), 81–111. https://doi.org/10.1016/j.jvolgeores.2010.08.013
    [Google Scholar]
  38. Kay, S. M., Coira, B., & Viramonte, J. (1994). Young mafic back arc volcanic rocks as indicators of continental lithospheric delamination beneath the Argentine Puna Plateau, central Andes. Journal of Geophysical Research, 99(B12), 24323–24339. https://doi.org/10.1029/94JB00896
    [Google Scholar]
  39. Kirby, E., & Whipple, K. (2001). Quantifying differential rock‐uplift rates via stream profile analysis. Geology, 29(5), 415–418. https://doi.org/10.1130/0091-7613(2001)029<0415:QDRURV>2.0.CO;2
    [Google Scholar]
  40. Kirby, E., & Whipple, K. X. (2012). Expression of active tectonics in erosional landscapes. Journal of Structural Geology, 44, 54–75. https://doi.org/10.1016/j.jsg.2012.07.009
    [Google Scholar]
  41. Le Maitre, R. W.
    , Streckeisen, A., Zanettin, B., Le Bas, M. J., Bonin, B., & Bateman, P. (Eds.) (2002). Igneous Rocks: A Classification and Glossary of Terms edited by R. W. Le Maitre. Cambridge, UK: Cambridge University Press. https://doi.org/10.1017/CBO9780511535581
    [Google Scholar]
  42. Letcher, A. J. (2007). Deformation history of the Susques basin (˜23°S, 66°W), Puna Plateau, NW Argentina: New constraints by apatite (U‐Th)/He thermochronology and 40Ar/39Ar geochronology, and implications for plateau formation in the central Andes. MSc Thesis. Stanford, California: Stanford University.
    [Google Scholar]
  43. Liu‐Zeng, J., Tapponnier, P., Gaudemer, Y., & Ding, L. (2008). Quantifying landscape differences across the Tibetan plateau: Implications for topographic relief evolution. Journal of Geophysical Research, 113, F04018. https://doi.org/10.1029/2007JF000897
    [Google Scholar]
  44. Luna, L. V., Bookhagen, B., Niedermann, S., Rugel, G., Scharf, A., & Merchel, S. (2018). Glacial chronology and production rate cross‐calibration of five cosmogenic nuclide and mineral systems from the southern Central Andean Plateau. Earth and Planetary Science Letters, 500, 242–253. https://doi.org/10.1016/j.epsl.2018.07.034
    [Google Scholar]
  45. Marquillas, R. A., del Papa, C. E., & Sabino, I. F. (2005). Sedimentary aspects and paleoenvironmental evolution of a rift basin: Salta Group (Cretaceous‐Paleogene), northwestern Argentina. International Journal of Earth Sciences (Geol. Rundschau), 94(1), 94–113. https://doi.org/10.1007/s00531-004-0443-2
    [Google Scholar]
  46. Marrett, R. A., & Strecker, M. R. (2000). Response of intracontinental deformation in the central Andes to late Cenozoic reorganization of South American Plate motions. Tectonics, 19(3), 452–467. https://doi.org/10.1029/1999TC001102
    [Google Scholar]
  47. Masek, J., Isacks, B. L., Gubbels, T. L., & Fielding, E. (1994). Erosion and tectonics at the margins of continental plateaus. Journal of Geophysical Research, 99(B7), 13941–13956.
    [Google Scholar]
  48. Mazzuoli, R., Vezzoli, L., Omarini, R., Acocella, V., Gioncada, A., Matteini, M., … Scaillet, S. (2008). Miocene magmatism and tectonics of the easternmost sector of the Calama–Olacapato–El Toro fault system in Central Andes at ~24 S: Insights into the evolution of the Eastern Cordillera. Geological Society of America Bulletin, 120(11–12), 1493–1517. https://doi.org/10.1130/B26109.1
    [Google Scholar]
  49. Mendez, V., Navarini, A., Plaza, D., & Viera, V. (1973). Faja Eruptiva de la Puna Oriental. Actas Del 5th Congreso Geológico Argentino, 4, 89–100. https://doi.org/10.1029/2000TC900031/full
    [Google Scholar]
  50. Métivier, F., Gaudemer, Y., Tapponnier, P., & Meyer, B. (1998). Northeastward growth of the Tibet plateau deduced from balanced reconstruction of two depositional areas. The Qaidam and Hexi Corridor basins, China, 17(6), 823–842. http://doi.org/10.1029/98TC02764
    [Google Scholar]
  51. Montero‐López, C., del Papa, C. E., Hongn, F. D., Strecker, M. R., & Aramayo, A. (2016). Synsedimentary broken‐foreland tectonics during the Paleogene in the Andes of NW Argentine: New evidence from regional to centimetre‐scale deformation features. Basin Research, 30(1), 808–18. https://doi.org/10.1111/bre.12212
    [Google Scholar]
  52. Mudelsee, M., & Schulz, M. (1997). The Mid‐Pleistocene climate transition: Onset of 100 ka cycle lags ice volume build‐up by 280 ka. Earth and Planetary Science Letters, 151(1–2), 117–123.
    [Google Scholar]
  53. Norton, K., & Schlunegger, F. (2018). Migrating deformation in the Central Andes from enhanced orographic rainfall. Nature Communications, 2, 584–7. https://doi.org/10.1038/ncomms1590
    [Google Scholar]
  54. Omarini, R. H. (1983). Caracterización Litológica, Diferencíon y Génesis de la Formación Puncoviscana entre el Valle de Lerma y la Faja Eruptiva de la Puna, 244 p. Salta, Argentina: Universidad Nacional De Salta.
    [Google Scholar]
  55. del Papa, C., Hongn, F., Powell, J., Payrola, P., Do Campo, M., Strecker, M. R., … Pereyra, R. (2013). Middle Eocene‐Oligocene broken‐foreland evolution in the Andean Calchaqui Valley, NW Argentina: Insights from stratigraphic, structural and provenance studies. Basin Research, 25(5), 574–593. https://doi.org/10.1111/bre.12018
    [Google Scholar]
  56. del Papa, C. E., & Petrinovic, I. A. (2017). The development of Miocene extensional and short‐lived basin in the Andean broken foreland: The Conglomerado Los Patos, Northwestern Argentina. Journal of South American Earth Sciences, 73, 191–201. https://doi.org/10.1016/j.jsames.2016.12.008
    [Google Scholar]
  57. Payrola, P. A., Powell, J., del Papa, C. E., & Hongn, F. D. (2009). Middle Eocene deformation‐sedimentation in the Luracatao Valley: Tracking the beginning of the foreland basin of northwestern Argentina. Journal of South American Earth Sciences, 28(2), 142–154. https://doi.org/10.1016/j.jsames.2009.06.002
    [Google Scholar]
  58. Pearson, D. M., Kapp, P. A., DeCelles, P. G., Reiners, P. W., Gehrels, G. E., Ducea, M. N., & Pullen, A. (2013). Influence of pre‐Andean crustal structure on Cenozoic thrust belt kinematics and shortening magnitude: Northwestern Argentina. Geosphere, 9(6), 1766–1782. https://doi.org/10.1130/GES00923.S2
    [Google Scholar]
  59. Pearson, D. M., Kapp, P., Reiners, P. W., Gehrels, G. E., Ducea, M. N., Pullen, A., … Alonso, R. N. (2012). Major Miocene exhumation by fault‐propagation folding within a metamorphosed, early Paleozoic thrust belt: Northwestern Argentina. Tectonics, 31(4), 808–24. https://doi.org/10.1029/2011TC003043
    [Google Scholar]
  60. Petrinovic, I. A., Marti, J., Aguirre‐Díaz, G. J., Guzmán, S., Geyer, A., & Paz, N. S. (2010). The Cerro Aguas Calientes caldera, NW Argentina: An example of a tectonically controlled, polygenetic collapse caldera, and its regional significance. Journal of Volcanology and Geothermal Research, 194(1–3), 15–26. https://doi.org/10.1016/j.jvolgeores.2010.04.012
    [Google Scholar]
  61. Petrinovic, I. A., Mitjavila, J., Viramonte, J. G., Marti, J., Becchio, R., Arnosio, M., & Colombo, F. (1999). Descripción geoquímica y geocronológica de secuencias volcánicas neógenas de Trasarco, en el extremo oriental de la Cadena Volcánica Transversal del Que var (Noroeste de Ar gentina). Acta Geologica Hispanica, 34(2–3), 255–272.
    [Google Scholar]
  62. Petrinovic, I. A., Riller, U., Brod, J. A., Alvarado, G., & Arnosio, M. (2006). Bimodal volcanism in a tectonic transfer zone: Evidence for tectonically controlled magmatism in the southern Central Andes, NW Argentina. Journal of Volcanology and Geothermal Research, 152(3–4), 240–252. https://doi.org/10.1016/j.jvolgeores.2005.10.008
    [Google Scholar]
  63. Pingel, H., Alonso, R. N., Mulch, A., Rohrmann, A., Sudo, M., & Strecker, M. R. (2014). Pliocene orographic barrier uplift in the southern Central Andes. Geology, 42(8), 691–694. https://doi.org/10.1130/G35538.1
    [Google Scholar]
  64. Pingel, H., Mulch, A., Alonso, R. N., Cottle, J., Hynek, S. A., Poletti, J., … Strecker, M. R. (2016). Surface uplift and convective rainfall along the southern Central Andes (Angastaco Basin, NW Argentina). Earth and Planetary Science Letters, 440, 33–42. https://doi.org/10.1016/j.epsl.2016.02.009
    [Google Scholar]
  65. Pingel, H., Strecker, M. R., Alonso, R. N., & Schmitt, A. K. (2013). Neotectonic basin and landscape evolution in the Eastern Cordillera of NW Argentina, Humahuaca Basin (~24 S). Basin Research, 25(5), 554–573. https://doi.org/10.1111/bre.12016
    [Google Scholar]
  66. Ramos, V. A. (1970). Geología de los primeros contrafuertes de la Puna saltojujeña entre San Antonio de los Cobres y el Moreno. (J. C. M. Turner, Ed.). Doctoral Thesis., 86 p. Buenos Aires, Argentina: Universidad de Buenos Aires.
    [Google Scholar]
  67. Ramos, V. A. (1973). Estructura de los primeros contrafuertes de la Puna salto‐jujeña y sus manifestaciones volcánicas asociadas (Vol. 4, pp. 159–202). Presented at the 5th Congreso Geológico Argentino, Buenos Aires.
  68. Schildgen, T. F., Robinson, R. A. J., Savi, S., Phillips, W. M., Spencer, J. Q. G., Bookhagen, B., … Strecker, M. R. (2016). Landscape response to late Pleistocene climate change in NW Argentina: Sediment flux modulated by basin geometry and connectivity. Journal of Geophysical Research, 121(2), 392–414. https://doi.org/10.1002/2015JF003607
    [Google Scholar]
  69. Schlunegger, F., Norton, K. P., & Zeilinger, G. (2011). Climatic forcing on channel profiles in the Eastern Cordillera of the Coroico Region. Bolivia. Journal of Geology, 119(1), 97–107.
    [Google Scholar]
  70. Schreiber, U., & Schwab, K. (1991). Geochemistry of quaternary shoshonitic lavas related to the Calama‐Olacapato‐El Toro Lineament, NW Argentina. Journal of South American Earth Sciences, 4(1–2), 73–85. https://doi.org/10.1016/0895-9811(91)90019-H
    [Google Scholar]
  71. Schwanghart, W., & Kuhn, N. J. (2010). TopoToolbox: A set of Matlab functions for topographic analysis. Environmental Modelling and Software, 25(6), 770–781. https://doi.org/10.1016/j.envsoft.2009.12.002
    [Google Scholar]
  72. Schwanghart, W., & Scherler, D. (2014). Short Communication: TopoToolbox 2 – MATLAB‐based software for topographic analysis and modeling in Earth surface sciences. Earth Surface Dynamics, 2(1), 808–7. https://doi.org/10.5194/esurf-2-1-2014
    [Google Scholar]
  73. Seggiaro, R., Guzmán, S., Pereyra, R., Coppolecchia, M., & Cegarra, M. (2016). Neotectónica y volcanismo monogenético cuaternario sobre el segmento central del lineamiento Calama Olacapato Toro, NO Argentino. Revista De La Asociación Geológica Argentina, 73(4), 468–477.
    [Google Scholar]
  74. Sobel, E. R., Hilley, G. E., & Strecker, M. R. (2003). Formation of internally drained contractional basins by aridity‐limited bedrock incision. Journal of Geophysical Research, 108(B7), 2344. https://doi.org/10.1029/2002JB001883
    [Google Scholar]
  75. Steinmetz, R. L., & Galli, C. I. (2015). Basin development at the eastern border of the Northern Puna and its relationship with the plateau evolution. Journal of South American Earth Sciences, 63, 244–259. https://doi.org/10.1016/j.jsames.2015.07.017
    [Google Scholar]
  76. Strecker, M. R., Alonso, R., Bookhagen, B., Carrapa, B., Coutand, I., Hain, M. P., & Sobel, E. R. (2009). Does the topographic distribution of the central Andean Puna Plateau result from climatic or geodynamic processes?Geology, 37(7), 643–646. https://doi.org/10.1130/G25545A.1
    [Google Scholar]
  77. Strecker, M. R., Alonso, R. N., Bookhagen, B., Carrapa, B., Hilley, G. E., Sobel, E. R., & Trauth, M. H. (2007). Tectonics and climate of the southern central Andes. Annual Reviews in Earth and Planetary Sciences, 35, 747–787. https://doi.org/10.1146/annurev.earth.35.031306.140158
    [Google Scholar]
  78. Streit, R. L., Burbank, D. W., Strecker, M. R., Alonso, R. N., Cottle, J. M., & Kylander Clark, A. R. C. (2015). Controls on intermontane basin filling, isolation and incision on the margin of the Puna Plateau, NW Argentina (~23°S). Basin Research, 29(1), 131–155. https://doi.org/10.1111/bre.12141
    [Google Scholar]
  79. Tchilinguirian, P., & Pereyra, F. X. (2001). Geomorfología del sector Salinas Grandes‐Quebrada de Humahuaca, provincia de Jujuy. Revista Asociación Geológica Argentina, 56, 3–15.
    [Google Scholar]
  80. Tofelde, S., Schildgen, T. F., Savi, S., Pingel, H., Wickert, A. D., Bookhagen, B., … Strecker, M. R. (2017). 100 kyr fluvial cut‐and‐fill terrace cycles since the Middle Pleistocene in the southern Central Andes, NW Argentina. Earth and Planetary Science Letters, 473, 141–153. https://doi.org/10.1016/j.epsl.2017.06.001
    [Google Scholar]
  81. Turner, J. (1960). Estratigrafía de la Sierra de Santa Victoria y adyacencias. Bol. Acad. Nac. De Ciencias Córdoba, 41(2), 163–196.
    [Google Scholar]
  82. Vandervoort, D. S., Jordan, T. E., Zeitler, P., & Alonso, R. N. (1995). Chronology of internal drainage development and uplift, southern Puna plateau. Argentine central Andes. Geology, 23(2), 145–148. https://doi.org/10.1130/0091-7613(1995)023<0145:COIDDA>2.3.CO;2
    [Google Scholar]
  83. Vermeesch, P. (2012). On the visualisation of detrital age distributions. Chemical Geology, 312‐313(C), 190–194. https://doi.org/10.1016/j.chemgeo.2012.04.021
    [Google Scholar]
  84. Vezzoli, L., Acocella, V., Omarini, R., & Mazzuoli, R. (2012). Miocene sedimentation, volcanism and deformation in the Eastern Cordillera (24 30′ S, NW Argentina): tracking the evolution of the foreland basin of the Central Andes. Basin Research, 24(6), 637–663.
    [Google Scholar]
  85. Viramonte, J. G., Reynolds, J. H., del Papa, C. E., & Disalvo, A. (1994). The Corte Blanco garnetiferous tuff: A distinctive late Miocene marker bed in northwestern Argentina applied to magnetic polarity stratigraphy in the Río Yacones, Salta Province. Earth Planet Sci Lett, 121, 519–531.https://doi.org/10.1016/0012-821X(94)90088-4
    [Google Scholar]
  86. Vizy, E. K., & Cook, K. H. (2007). Relationship between Amazon and high Andes rainfall. Journal of Geophysical Research, 112(D7), D07107. https://doi.org/10.1029/2006JD007980
    [Google Scholar]
  87. Walker, R. T., Ramsey, L. A., & Jackson, J. (2011). Geomorphic evidence for ancestral drainage patterns in the Zagros Simple Folded Zone and growth of the Iranian plateau. Geological Magazine, 148(5–6), 901–910. https://doi.org/10.1017/S0016756811000185
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12346
Loading
/content/journals/10.1111/bre.12346
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): Andean Plateau; NW Argentina; Puna; river incision; sediment routing; surface processes

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error