1887
Volume 16, Issue 6
  • ISSN: 1569-4445
  • E-ISSN: 1873-0604
PDF

Abstract

ABSTRACT

Over‐deepened basins exist throughout the Alpine realm. Improving our knowledge on these basins is of high social relevance, since these areas are often well‐populated and they possess, for instance, unusual hydrological settings. Nonetheless, geophysical and sedimentological investigations of over‐deepened basins are rare. We analyse the sedimentary succession of such a basin, the Tannwald Basin, through geological interpretation of seismic reflection profiles. The basin is located approximately 60 km north of the European Alps. It was incised into Tertiary molasse sediments by the Rhine Glacier and later filled by glacial, fluvial, and lacustrine deposits of 250 m thickness. The Leibniz Institute for Applied Geophysics acquired a grid of five high‐resolution seismic reflection lines that imaged till the deepest parts of the Tannwald Basin. The seismic profiles, processed to a pre‐stack depth migration level, allow a detailed geological interpretation that is calibrated with the help of a nearby borehole. We determine the structure and the seismic facies of the sediment succession in the basin and presume the following hypothesis of the evolution of the basin: sub‐glacial erosion comprises the excavation of the over‐deepened basin as well as detachment of large fragments of molasse material. These molasse slabs were deposited within the basin in a layer of basal till that graded upwards in water‐lain till and fine‐grained deposits. During the last two glaciations, the basinal structure became buried by till sequences and glacio‐fluvial sediments.

Loading

Article metrics loading...

/content/journals/10.1002/nsg.12011
2018-08-16
2019-12-06
Loading full text...

Full text loading...

/deliver/fulltext/nsg/16/6/nsg12011.html?itemId=/content/journals/10.1002/nsg.12011&mimeType=html&fmt=ahah

References

  1. AndersonR., MolnarP. and KesslerM.2006. Features of glacial valley profiles simply explained. Journal of Geophysical Research111, F01004. https://doi.org/10.1029/2005JF000344.
    [Google Scholar]
  2. AnselmettiF., PreusserF., BavecM., CrouzetC., FiebigM., GabrielG.et al. 2016. Drilling overdeepened Alpine valleys (DOVE). ICDP Full Proposal, 174 pp.
  3. BarnabaC., MarelloL., VuanA., PalmieriF., RomanelliM., PrioloE.et al. 2010. The buried shape of an alpine valley from gravity surveys, seismic and ambient noise analysis. Geophysical Journal International180, 715–733. https://doi.org/10.1111/j.1365-246X.2009.04428.x
    [Google Scholar]
  4. BehnkeC. and BramK.1998. Erforschung der würmzeitlichen Tannwald‐Becken‐Struktur (Fallgewichtseismik II – 1996). Report. NlfB Archive116:833.
    [Google Scholar]
  5. BennettM.M.
    and GlasserN.F. (Eds.). 2011. Glacial Geology: Ice Sheets and Landforms. John Wiley & Sons.
    [Google Scholar]
  6. BleibinhausF. and HilbergS.2012. Shape and structure of the Salzach Valley, Austria, from seismic traveltime tomography and full waveform inversion. Geophysical Journal International189, 1701–1716.
    [Google Scholar]
  7. BoenigkW.1987. Petrographische Untersuchungen jungtertiärer und quartärer Sedimente am linken Oberrhein. Jahresberichte und Mitteilungen des oberrheinischen geologischen Vereins NF82, 113–129.
    [Google Scholar]
  8. BradfordJ., LibertyL., LyleM., ClementW. and HessS.2006. Imaging complex structure in shallow seismic‐reflection data using prestack depth migration. Geophysics71, B175–B181.
    [Google Scholar]
  9. BrücklE., BrücklJ., ChwatalW. and UllrichC.2010. Deep alpine valleys: examples of geophysical explorations in Austria. Swiss Journal of Geoscience103, 329–344. https://doi.org/10.1007/s00015-010-0045-x.
    [Google Scholar]
  10. BuechiM.W., FrankS.M., GrafH.R., MenziesJ. and AnselmettiF.S.2017. Subglacial emplacement of tills and meltwater deposits at the base of overdeepened bedrock troughs. Sedimentology64, 658–685. https://doi.org/10.1111/sed.12319.
    [Google Scholar]
  11. BükerF., GreenA.G. and HorstmeyerH.1998. Shallow seismic reflection study of a glaciated valley. Geophysics63, 1395–1407. https://doi.org/10.1190/1.1444441.
    [Google Scholar]
  12. BükerF., GreenA.G. and HorstmeyerH.2000. 3‐D high‐resolution reflection seismic imaging of unconsolidated glacial and glaciolacustrine sediments: processing and interpretation. Geophysics65, 18–34. https://doi.org/10.1190/1.1444709.
    [Google Scholar]
  13. de FrancoR., BiellaG., CaielliG., BerraF., GuglielminM., LozejA.et al. 2009. Overview of high resolution seismic prospecting in pre‐Alpine and Alpine basins. Quaternary International204, 65–75. https://doi.org/10.1016/j.quaint.2009.02.011.
    [Google Scholar]
  14. DehnertA., LowickS.E., PreusserF., AnselmettiF.S., Drescher‐SchneiderR., GrafH.‐R.et al. 2012. Evolution of an overdeepened trough in the northern Alpine Foreland at Niederweningen, Switzerland. Quaternary Science Reviews34, 127–145. https://doi.org/10.1016/j.quascirev.2011.12.015.
    [Google Scholar]
  15. EhlersJ. and GibbardP.L.2004. Quaternary Glaciations – Extent and Chronology: Part I – Europe, Vol. 2. Elsevier.
    [Google Scholar]
  16. EllwangerD., Lämmermann‐BarthelJ. and NeebI.2003. Eine landschafts‐übergreifende Lockergesteinsgliederung vom Alpenrand zum Oberrhein. GeoArchaeoRhein4, 81–124.
    [Google Scholar]
  17. EllwangerD., Wielandt‐SchusterU., FranzM. and SimonT.2011. The Quaternary of the southwest German Alpine Foreland (Bodensee‐Oberschwaben, Baden‐Württemberg, Southwest Germany). Quaternary Science Journal60, 306–328. https://doi.org/10.3285/eg.60.2-3.07.
    [Google Scholar]
  18. HuuseM. and Lykke‐AndersenH.2000. Overdeepened Quaternary valleys in the eastern Danish North Sea: morphology and origin. Quaternary Science Reviews19, 1233–1253. https://doi.org/10.1016/S0277-3791(99)00103-1
    [Google Scholar]
  19. JørgensenF. and SandersenP.B.2009. Buried valley mapping in Denmark: evaluating mapping method constraints and the importance of data density. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften160, 211–223.
    [Google Scholar]
  20. LGRB
    LGRB . 2015. Lithostratigraphische Entwicklung des baden‐württembergischen Rheingletschergebiets: Übertiefte Becken‐ und Moränen‐Landschaft. LGRB Fachbericht 2015/4, Regierungspräsidium Freiburg, Freiburg i.Br, Germany. https://produkte.lgrb-bw.de/docPool/c525_data.pdf.
  21. Litholex
    Litholex . 2017. Lithostratigraphisches Lexikon Deutschland 2016. http://litholex.bgr.de/.
  22. MacGregorK.R., AndersonR.S., AndersonS.P. and WaddingtonE.D.2000. Numerical simulations of glacial‐valley longitudinal profile evolution. Geology28, 1031–1034.
    [Google Scholar]
  23. MariesG., AhokangasE., MäkinenJ., PasanenA. and MalehmirA.2016. Interlobate esker architecture and related hydrogeological features derived from a combination of high‐resolution reflection seismics and refraction tomography, Virttaankangas, southwest Finland. Hydrogeology Journal25, 829–845. https://doi.org/10.1007/s10040-016-1513-9.
    [Google Scholar]
  24. MorendD., PuginA. and GorinG.E.2002. High‐resolution seismic imaging of outcrop‐scale channels and an incised‐valley system within the fluvial‐dominated Lower Freshwater Molasse (Aquitanian, western Swiss Molasse Basin). Sedimentary Geology149, 245–264. https://doi.org/10.1016/S0037-0738(01)00176-2.
    [Google Scholar]
  25. NitscheF.O., GreenA.G., HorstmeyerH. and BükerF.2002. Late quaternary depositional history of the Reuss delta, Switzerland: constraints from high‐resolution seismic reflection and Georadar surveys. Journal of Quaternary Science17, 131–143. https://doi.org/10.1002/jqs.645.
    [Google Scholar]
  26. PfiffnerO.A.1986. Evolution of the north alpine foreland basin in the Central Alps. In: Foreland Basins (eds P.A.Allen and P.Homewood ), pp. 219–228. Blackwell. https://doi.org/10.1002/9781444303810.ch11.
    [Google Scholar]
  27. PfiffnerO.A.2014. Geology of the Alps, 2nd edn. Wiley and Sons, New Jersey.
    [Google Scholar]
  28. PfiffnerO.A., LehnerP., HeitzmannP., MuellerS. and SteckA.1997. Deep Structure of the Swiss Alps. Springer.
    [Google Scholar]
  29. PomperJ., SalcherB.C., EichkitzC., PrasicekG., LangA., LindnerM.et al. 2017. The glacially overdeepened through the Salzach Valley, Austria Bedrock: geometry and sedimentary fill of a major Alpine subglacial basin. Geomorphology295, 147–158.
    [Google Scholar]
  30. PreusserF., ReitnerJ.M. and SchlüchterC.2010. Distribution, geometry, age and origin of overdeepened valleys and basins in the Alps and their foreland. Swiss Journal of Geosciences103, 407–426. https://doi.org/10.1007/s00015-010-0044-y.
    [Google Scholar]
  31. PuginA.J.M., BrewerK., CartwrightT., PullanS.E., PerretD., CrowH.et al. 2013. Near surface S‐wave seismic reflection profiling – new approaches and insights. First Break31: 49–60.
    [Google Scholar]
  32. PuginA.J.M., PullanS.E., HunterJ.A. and OldenborgerG.A.2009. Hydrogeological prospecting using P‐and S‐wave landstreamer seismic reflection methods. Near Surface Geophysics7, 315–327. https://doi.org/10.3997/1873-0604.2009033.
    [Google Scholar]
  33. PuginA.J.M., OldenborgerG.A., CummingsD.I., RussellH.A. and SharpeD.R.2014. Architecture of buried valleys in glaciated Canadian Prairie regions based on high resolution geophysical data. Quaternary Science Reviews86: 13–23. https://doi.org/10.1016/j.quascirev.2013.12.007.
    [Google Scholar]
  34. ReitnerJ.M., GruberW., RömerA. and MorawetzR.2010. Alpine overdeepenings and paleo‐ice flow changes: an integrated geophysical‐sedimentological case study from Tyrol (Austria). Swiss Journal of Geosciences103: 385–405. https://doi.org/10.1007/s00015-010-0046-9.
    [Google Scholar]
  35. van HusenD. and MayerM.2007. The hole of Bad Aussee; an unexpected overdeepened area in NW Steiermark, Austria. Austrian Journal of Earth Sciences100, 128–136.
    [Google Scholar]
  36. van RensbergenP., de BatistM., BeckC. and ChapronE.1999. High‐resolution seismic stratigraphy of glacial to interglacial fill of a deep glacigenic lake: lake Le Bourget, Northwestern Alps, France. Sedimentary Geology128, 99–129. https://doi.org/10.1016/S0037-0738(99)00064-0.
    [Google Scholar]
  37. van RensbergenP., de BatistM., BeckC. and ManaltF.1998. High‐resolution seismic stratigraphy of late Quaternary fill of Lake Annecy (northwestern Alps): evolution from glacial to interglacial sedimentary processes. Sedimentary Geology117, 71–96. https://doi.org/10.1016/S0037-0738(97)00123-1.
    [Google Scholar]
  38. von HartmannH., TannerD.C. and SchumacherS.2016. Initiation and development of normal faults within the German Alpine Foreland Basin: the inconspicuous role of basement structures. Tectonics35, 1560–1574. https://doi.org/10.1002/2016TC004176.
    [Google Scholar]
  39. WesselsM., AnselmettiF., ArtusoR., BaranR., DautG., GaideS.et al. 2015. Bathymetry of Lake Constance – a high‐resolution survey in a large, deep lake: Zeitschrift für Geodäsie . Geoinformation und Landmanagement4, 203–210. https://doi.org/10.12902/zfv-0079-2015.
    [Google Scholar]
  40. WiederholdH., BunessH. and BramK.1998. Glacial structures in northern Germany revealed by a high‐resolution shallow reflection survey. Geophysics63, 1265–1272.
    [Google Scholar]
  41. ZieglerP.A., CloetinghS. and van WeesJ.D.1995. Dynamics of intra‐plate compressional deformation: the Alpine foreland and other examples. Tectonophysics252, 7–59, https://doi.org/10.1016/0040-1951(95)00102-6.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1002/nsg.12011
Loading
/content/journals/10.1002/nsg.12011
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): high-resolution seismic , seismic interpretation and seismic lithology
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error