1887
Volume 16, Issue 6
  • ISSN: 1569-4445
  • E-ISSN: 1873-0604

Abstract

ABSTRACT

Time‐lapse applications of seismic methods have been recently suggested in the near‐surface scale to track hydrological properties variations due to climate, water level changes, or permafrost thaw, for instance. But when it comes to traveltime tomography or surface‐wave dispersion inversion, a careful estimation of the data variability associated with the picking process must be considered prior to any time‐lapse interpretation. In this study, we propose to estimate picking errors that are due to the inherent subjectivity of human operators, using statistical analysis based on picking repeatability. Two seismic datasets were collected along the same profile under distinct hydrological conditions across a granite–micaschist contact at the Ploemeur hydrological observatory (France). Both datasets were recorded using identical equipment and acquisition parameters. A thorough statistical analysis is conducted to estimate picking uncertainties, at the 99% confidence level, for both P‐wave first arrival time and surface‐wave phase velocity. With the suggested workflow, we are able to identify 33% of the P‐wave traveltimes and 16% of the surface‐wave dispersion data, which can be considered significant enough for time‐lapse interpretations. In this selected portion of the data, point‐by‐point differences highlight important variations linked to different hydrogeological properties of the subsurface. These variations show strong contrasts with a non‐monotonous behaviour along the line, offering new insights to better constrain the dynamics of this hydrosystem.

Loading

Article metrics loading...

/content/journals/10.1002/nsg.12019
2018-11-13
2020-04-09
Loading full text...

Full text loading...

References

  1. Ajo‐FranklinJ., DouS., LindseyN., DaleyT.M., FreifeldB., MartinE.R., et al. 2017. Timelapse surface wave monitoring of permafrost thaw using distributed acoustic sensing and a permanent automated seismic sources. SEG International Exposition and 87th Annual Meeting, Huston, TX, pp. 5223–5227.
  2. AldersonsF.2004. Toward three‐dimensional crustal structure of the Dead Sea region from local earthquake tomography . PhD thesis, Tel Aviv University, Israel.
  3. AlleyW.M., HealyR.W., LaBaughJ.W. and ReillyT.E.2002. Flow and storage in groundwater systems. Science296, 1985–1990.
    [Google Scholar]
  4. ArtsI.R., EikenO., ChadwickA., WeigelP.Z., van der MeerL. and ZinsznerB.2004. Monitoring of CO2 injected at Sleipner using time‐lapse seismic data. Energy29, 1383–1392.
    [Google Scholar]
  5. BauerK., MoeckI., NordenB., SchulzeA., WeberM. and WirthH.2010. Tomographic P wave velocity and vertical velocity gradient structure across the geothermal site Groß Schönebeck (NE German Basin): relationship to lithology, salt tectonics, and thermal regime. Journal of Geophysical Research: Solid Earth115, B08312.
    [Google Scholar]
  6. BauerK., SchulzeA., RybergT., SobolevS.V. and WeberM.H.2003. Classification of lithology from seismic tomography: a case study from the Messum igneous complex, Namibia. Journal of Geophysical Research: Solid Earth108, 2152–2167.
    [Google Scholar]
  7. BergamoP., DashwoodB., UhlemannS., SwiftR., ChambersJ.E., GunnD.A.et al. 2016a. Time‐lapse monitoring of climate effects on earthworks using surface waves. Geophysics81, EN1–EN15.
    [Google Scholar]
  8. BergamoP., DashwoodB., UhlemannS., SwiftR., ChambersJ.E., GunnD.A.et al. 2016b. Time‐lapse monitoring of fluid‐induced geophysical property variations within an unstable earthwork using P‐wave refraction. Geophysics81, EN17–EN27.
    [Google Scholar]
  9. BinleyA., HubbardS.S., HuismanJ.A., RevilA., RobinsonD.A., SinghaK.et al. 2015. The emergence of hydrogeophysics for improved understanding of subsurface processes over multiple scales. Water Resources Research51, 3837–3866.
    [Google Scholar]
  10. BiotM.A.1956a. Theory of propagation of elastic waves in a fluid‐saturated porous solid. I. Low frequency range. Journal of Acoustical Society of America28, 168–178.
    [Google Scholar]
  11. BiotM.A.1956b. Theory of propagation of elastic waves in a fluid‐saturated porous solid. II. Higher frequency range. Journal of Acoustical Society of America28, 179–191.
    [Google Scholar]
  12. BodetL., AbrahamO. and ClorennecD.2009. Near‐offsets effect on Rayleigh‐wave dispersion measurements: physical modeling. Journal of Applied Geophysics68, 95–103.
    [Google Scholar]
  13. BodetL., van WijkK., BitriA., AbrahamO., CôteP., GrandjeanG.et al. 2005. Surface‐wave inversion limitations from laser‐Doppler physical modeling. Journal of Environmental and Engineering Geophysics10, 151–162.
    [Google Scholar]
  14. ChadwickA., WilliamsG., DelepineN., ClochardV., LabatK., SturtonS.et al. 2010. Quantitative analysis of time‐lapse seismic monitoring data at the Sleipner CO2 storage operation. The Leading Edge29, 170–177.
    [Google Scholar]
  15. DescloitresM., RibolziO., Le TroquerY. and ThiebauxJ.P.2003. Study of infiltration in a Sahelian gully erosion area using time‐lapse resistivity mapping. Journal of Applied Geophysics53, 229–253.
    [Google Scholar]
  16. Di StefanoR., AldersonsF., KisslingE., BaccheschiP., ChiarabbaC. and GiardiniD.2006. Automatic seismic phase picking and consistent observation error assessment: application to the Italian seismicity. Geophysical Journal International165, 121–134.
    [Google Scholar]
  17. EzerskyM.G., BodetL., AkawwiE., Al‐ZoubiA.S., CamerlynckC., DhemaiedA.et al. 2013. Seismic surface‐wave prospecting methods for sinkhole hazard assessment along the Dead Sea shoreline. Journal of Environmental and Engineering Geophysics18, 233–253.
    [Google Scholar]
  18. FalgàsE., LedoJ., BenjumeaB., QueraltP., MarcuelloA., TeixidóT.et al. 2011. Integrating hydrogeological and geophysical methods for the characterization of a deltaic aquifer system. Surveys in Geophysics32, 857–873.
    [Google Scholar]
  19. GarofaloF., FotiS., HollenderF., BardP.Y., CornouC., CoxB.R., et al. 2016. InterPACIFIC project: comparison of invasive and non‐invasive methods for seismic site characterization. Part I: intra‐comparison of surface wave methods. Soil Dynamics and Earthquake Engineering82, 222–240.
    [Google Scholar]
  20. GraysonR.B., WesternA.W., ChiewF.H.S. and BlöschlG.1997. Preferred states in spatial soil moisture patterns: local and nonlocal controles. Water Resources Research33, 2897–2908.
    [Google Scholar]
  21. GrelleG. and GuadagnoF.M.2009. Seismic refraction methodology for groundwater level determination: ‘water seismic index’. Journal of Applied Geophysics68, 301–320.
    [Google Scholar]
  22. GuérinR., 2005. Borehole and surface‐based hydrogeophysics. Hydrogeology Journal13, 251–254.
    [Google Scholar]
  23. HubbardS.S. and LindeN.2011. Hydrogeophysics. Treatise on Water Science. Elsevier.
    [Google Scholar]
  24. IkedaT., TsujiT., TakanashiM., KurosawaI., NakatsukasaM., KatoA.et al. 2017. Temporal variation of the shallow subsurface at the Aquistore CO2 storage site associated with environmental influences using a continuous and controlled seismic source. Journal of Geophysical Research: Solid Earth122, 2859–2872.
    [Google Scholar]
  25. JiaoL. and MoonW.M.2000. Detection of seismic refraction signals using a variance fractal dimension technique. Geophysics65, 286–292.
    [Google Scholar]
  26. Jiménez‐MartínezJ., LonguevergneL., Le BorgneT., DavyP., RussianA. and BourO.2013. Temporal and spatial scaling of hydraulic response to recharge in fractured aquifers: insights from a frequency domain analysis. Water Resources Research49, 3007–3023.
    [Google Scholar]
  27. JongmansD. and DemanetD.1993. The importance of surface waves in vibration study and the use of Rayleigh waves for estimating the dynamic characteristics of soils. Engineering Geology34, 105–113.
    [Google Scholar]
  28. JougnotD., LindeN., HaarderE.B. and LoomsM.C.2015. Monitoring of saline tracer movement with vertically distributed self‐potential measurements at the HOBE agricultural test site, Voulund, Denmark. Journal of Hydrology521, 314–327.
    [Google Scholar]
  29. KonstantakiL., CarpentierS., GarofaloF., BergamoP. and SoccoL.V.2013. Determining hydrological and soil mechanical parameters from multichannel surface‐wave analysis across the Alpine Fault at Inchbonnie, New Zealand. Near Surface Geophysics11, 435–448.
    [Google Scholar]
  30. Le BorgneT., BourO., RileyM.S., GouzeP., PezardP.A., BelgouhlA.et al. 2007. Comparison of alternative methodologies for identifying and characterizing preferential flow paths in heterogeneous aquifers. Journal of Hydrology345, 134–148.
    [Google Scholar]
  31. LecocqT., LonguevergneL., PedersenH.A., BrenguierF. and StammlerK.2017. Monitoring ground water storage at mesoscale using seismic noise: 30 years of continuous observation and thermo‐elastic and hydrological modeling. Scientific Reports7, 14241.
    [Google Scholar]
  32. LuZ.2014. Feasibility of using a seismic surface wave method to study seasonal and weather effects on shallow surface soils. Journal of Environmental & Engineering Geophysics19, 71–85.
    [Google Scholar]
  33. LumleyD., LandroM., VasconcelosI., EisnerL., HatchellP., LiY.et al. 2015. Advances in time‐lapse geophysics – introduction. Geophysics80, WAi–WAii.
    [Google Scholar]
  34. MariJ.‐L. and PorelG.2008. 3D seismic imaging of a near‐surface heterogeneous aquifer: a case study. Oil and Gas Science and Technology – Revue IFP63, 179–201.
    [Google Scholar]
  35. MariJ.‐L. and PorelG.2016. Flow detection using well seismic data. 78th EAGE Conference and Exhibition, Madrid, Spain.
  36. McLachlanP., ChambersJ.E., UhlemannS.S. and BinleyA.2017. Geophysical characterisation of the groundwater‐surface water interface. Advances in Water Resources109, 302–319.
    [Google Scholar]
  37. MokhtarT.A., HerrmannR.B. and RussellD.R.1988. Seismic velocity and Q model for the shallow structure of the Arabian shield from short‐period Rayleigh waves. Geophysics53, 1379–1387.
    [Google Scholar]
  38. O'NeillA.2003. Full waveform Reflectivity for modelling, Inversion and appraisal of seismic surface wave dispersion in shallow site investigation . PhD thesis, University of Western Australia, Perth, Australia.
  39. O'NeillA., DentithM. and ListR.2003. Full‐waveform P‐SV reflectivity inversion of surface waves for shallow engineering applications. Exploration Geophysics34, 158–173.
    [Google Scholar]
  40. PasquetS. and BodetL.2017. SWIP: an integrated workflow for surface‐wave dispersion inversion and profiling. Geophysics82, WB47–WB61.
    [Google Scholar]
  41. PasquetS., BodetL., BergamoP., GuérinR., MartinR., MourguesR.et al. 2016a. Small scale seismic monitoring of varying water level in granular media. Vadose Zone Journal15, 14–44.
    [Google Scholar]
  42. PasquetS., BodetL., DhemaiedA., MouhriA., VitaleQ., RejibaF.et al. 2015b. Detecting different water table levels in a shallow aquifer with combined P‐, surface and SH‐wave surveys: insights from V P/V S or Poisson's ratios. Journal of Applied Geophysics113, 38–50.
    [Google Scholar]
  43. PasquetS., BodetL., LonguevergneL., DhemaiedA., CamerlynckC., RejibaF.et al. 2015a. 2D characterization of near‐surface V P/V S: surface‐wave dispersion inversion versus refraction tomography. Near Surface Geophysics13, 315–331.
    [Google Scholar]
  44. PasquetS., HolbrookW.S., CarrB.J. and SimsK.W.W.2016b. Geophysical imaging of shallow degassing in a Yellowstone hydrothermal system: imaging shallow degassing in Yellowstone. Geophysical Research Letters43, 12027–12035.
    [Google Scholar]
  45. RuelleuS., MoreauF., BourO., GapaisD. and MarteletG.2010. Impact of gently dipping discontinuities on basement aquifer recharge: an example from Ploemeur (Brittany, France). Journal of Applied Geophysics70, 161–168.
    [Google Scholar]
  46. SabbioneJ.I. and VelisD.2010. Automatic first‐breaks picking: new strategies and algorithms. Geophysics75, V67–V76.
    [Google Scholar]
  47. SaragiotisC.D., HadjileontiadisL.J. and PanasS.M.2002. PAI‐S/K: a robust automatic seismic P phase arrival identification scheme. IEEE Transactions on Geoscience and Remote Sensing40, 1395–1404.
    [Google Scholar]
  48. SchuiteJ., LonguevergneL., BourO., BoudinF., DurandS. and LavenantN.2015. Inferring field‐scale properties of a fractured aquifer from ground surface deformation during a well test. Geophysical Research Letters42, 10696–10703.
    [Google Scholar]
  49. SchusterG.T. and Quintus‐BoszA.1993. Wavepath eikonal traveltime inversion: theory. Geophysics58, 1314–1323.
    [Google Scholar]
  50. SenkayaM. and KarshH.2014. A semi‐automatic approach to identify first arrival time: the cross‐correlation technique (CCT). Earth Sciences Research Journal18, 107–113.
    [Google Scholar]
  51. SinghaK., Day‐LewisF.D., JohnsonT. and SlaterL.D.2015. Advances in interpretation of subsurface processes with time‐lapse electrical imaging. Hydrological Processes29, 1549–1576.
    [Google Scholar]
  52. SoccoL.V., FotiS. and BoieroD.2010. Surface‐wave analysis for building near‐surface velocity models – established approaches and new perspectives. Geophysics75, 75A83–75A102.
    [Google Scholar]
  53. SoccoL.V. and StrobbiaC.2004. Surface‐wave method for near‐surface characterization: a tutorial. Near Surface Geophysics2, 165–185.
    [Google Scholar]
  54. SuzakiA., MinatoS., GhoseR., KonishiC. and SakaiN.2017. Modelling time‐lapse shear-wave velocity changes in an unsaturated soil embankment due to water infiltration and drainage. First Break35, 81–90.
    [Google Scholar]
  55. TaritsC., AquilinaL., AyraudV., PauwelsH., DavyP., TouchardF.et al. 2006. Oxido‐reduction sequence related to flux variations of groundwater from a fractured basement aquifer (Ploemeur area, France). Applied Geochemistry21, 29–47.
    [Google Scholar]
  56. TaylorR.G., ScalonB., DöllP., RodellM., van BeekR., WadaY.et al. 2013. Ground water and climate change. Nature Climate Change3, 322–329.
    [Google Scholar]
  57. TouchardF.1999. Caractérisation hydrogéologique d'un aquifère en socle fracturé ‐ Site de Ploemeur (Morbihan) . PhD thesis, Géosciences Rennes, France.
  58. UhlemannS., ChambersJ., WilkinsonP., MaurerH., MerrittA., MeldrumP.et al. 2017. Four‐dimensional imaging of moisture dynamics during landslide reactivation. Journal of Geophysical Research: Earth Surface122, 398–418.
    [Google Scholar]
  59. UhlemannS., HagedornS., DashwoodB., MaurerH., GunnD., DijkstraT.et al. 2016. Landslide characterization using P‐ and S‐ wave seismic refraction tomography ‐ The importance of elastic moduli. Journal of Applied Geophysics134, 64–76.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1002/nsg.12019
Loading
/content/journals/10.1002/nsg.12019
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): Hydrogeophysics , Picking errors , Seismic waves , Time‐lapse and Vadose zone
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error