1887
Volume 17, Issue 1
  • ISSN: 1569-4445
  • E-ISSN: 1873-0604

Abstract

ABSTRACT

In a setting of predominantly saline surface waters in Zeeland, the Netherlands, the only available shallow fresh groundwater resource is present in the form of freshwater lenses floating on top of saline groundwater. This fresh water is vital for agricultural, industrial, ecological, water conservation and drinking water functions. An essential first step for managing the usable water properly is to know the location of the fresh–saline groundwater interface. Traditional salinity mapping with ground‐based vertical electrical soundings, electrical cone penetration tests or chloride measurements from groundwater samples is time‐consuming and, therefore, expensive to cover large areas. Airborne electromagnetics, which is fast and can cover large areas in short time, is an efficient alternative. Therefore, a consortium of BGR, Deltares and TNO conducted the project FRESHEM Zeeland during 2014–2017. An area of more than 2000 km² was surveyed using BGR's helicopter‐borne geophysical system totalling 9640 line‐km. The helicopter‐borne electromagnetic data, after inversion to resistivity–depth models, served as baseline information for further interpretation. Without information on lithology, however, an accurate discrimination between fresh and saline groundwater applying fixed resistivity thresholds would fail if clayey sediments exist. Therefore, a probabilistic Monte Carlo approach was developed within the FRESHEM project. This approach combines helicopter‐borne electromagnetic resistivities, 3D geological model (GeoTOP), laboratory results (formation factor and surface conductivity) and local groundwater measurements for the translation of resistivity data to chloride concentration. As such detailed information is generally not available, another approach, which uses only helicopter‐borne electromagnetic results to derive the thicknesses of the freshwater lenses from smooth inversion models, is presented in this paper. The corresponding fresh–saline groundwater interfaces are derived from steepest resistivity–depth (log–log) gradients appearing within a certain resistivity range. The bounds of this range are defined by resistivity values, which predominantly correlate with fresh or saline water, nearly independent of the lithology type. The results of this approach are checked using both synthetic and field data. The latter are compared with electrical cone penetration test measurements, the common threshold approach and the 3D chloride distribution of the FRESHEM results, particularly in an evaluation area where the transition of fresh to saline groundwater is relatively sharp. The fresh–saline groundwater interfaces derived by all methods are quite similar on average with deviations in the order of a metre. Locally, however, greater deviations occur, particularly close to the coast and along creek ridges or dunes, where the elevation of the fresh–saline groundwater interface varies notably.

Loading

Article metrics loading...

/content/journals/10.1002/nsg.12028
2019-01-13
2024-04-19
Loading full text...

Full text loading...

References

  1. BriggsI.C.1974. Machine contouring using minimum curvature. Geophysics39, 39–48.
    [Google Scholar]
  2. De LouwP.G.B., EemanS., SiemonB., VoortmanB.R., GunninkJ.L., Van BaarenE.S.et al. 2011. Shallow rainwater lenses in deltaic areas with saline seepage. Hydrology and Earth System Sciences15, 3659–3678.
    [Google Scholar]
  3. De LouwP., Oude EssinkG., EemanS., van BaarenE., VermueE., DelsmanJ.et al. 2015. Dunne regenwaterlenzen in zoute kwelgebieden. Landschap2015/1, 5–15.
    [Google Scholar]
  4. DelsmanJ.R., Van BaarenE.S., SiemonB., DabekaussenW., KaraoulisM.C., PauwP.S.et al. 2018. Large‐scale, probabilistic salinity mapping using airborne electromagnetics for groundwater management in Zeeland, the Netherlands. Environmental Research Letters13, 1–12.
    [Google Scholar]
  5. DrabbeJ. and Badon GhijbenW.1889. Nota in verband met de voorgenomen putboring nabij Amsterdam. Tijdschrift van het Koninklijk Instituut van Ingenieurs5, 8–22.
    [Google Scholar]
  6. FlucheB. and SengpielK.P.1997. Grundlagen und Anwendungen der Hubschrauber‐Geophysik. In: Umweltgeophysik (ed. M.Beblo ), pp. 363–393, Ernst und Sohn.
    [Google Scholar]
  7. GunninkJ., BoschJ.H.A., SiemonB., RothB. and AukenE.2012. Combining ground‐based and airborne EM through Artificial Neural Networks for modelling glacial till under saline groundwater conditions. Hydrology and Earth System Sciences16, 3061–3074.
    [Google Scholar]
  8. HerzbergA.1901. Die Wasserversorgung einiger Nordseebäder. Journal für Gasbeleuchtung und Wasserversorgung44, 815–819.
    [Google Scholar]
  9. KingJ., Oude EssinkG., KaraolisM., SiemonB. and BierkensM.F.P.2018. Quantifying geophysical inversion uncertainty using airborne frequency domain electromagnetic data applied at the province of Zeeland, the Netherlands. Water Resources Research54, 8420–8441.
    [Google Scholar]
  10. KirschR.
    (ed.) 2006. Groundwater Geophysics – A Tool for Hydrogeology. Springer, Berlin, Heidelberg.
    [Google Scholar]
  11. LinesL.R. and TreitelS., 1984. Tutorial: a review of least‐squares inversion and its application to geophysical problems. Geophysical Prospecting32, 159–186.
    [Google Scholar]
  12. Oude EssinkG.H.P., Van BaarenE.S. and De LouwP.G.B.2010. Effects of climate change on coastal groundwater systems: a modeling study in the Netherlands. Water Resources Research46, W00F04.
    [Google Scholar]
  13. PaineJ.G. and MintyR.S.2005. Airborne hydrogeophysics. In: Hydrogeophysics (eds Y.Rubin and S.S.Hubbard ), pp. 333–357. Springer, Berlin.
    [Google Scholar]
  14. PedersenJ.B., SchaarsF.W., ChristiansenA.V., FogedN., SchamperC., RolfH.et al. 2017. Mapping the fresh‐saltwater interface in the coastal zone using high‐resolution airborne electromagnetics. First Break35, 57–61.
    [Google Scholar]
  15. Provincie Zeeland
    Provincie Zeeland2017. Zoet‐zoutverdeling Zeeuwse ondergrond. https://www.zeeland.nl/water/zoet-water/zoet-zoutverdeling-zeeuwse-ondergrond.
  16. ReinschC.H.1967. Smoothing by spline functions. Numerische Mathematik10, 177–183.
    [Google Scholar]
  17. RevilA., CopereyA., ShaoZ., FlorschN., FabriciusI.L., DelsmanJ.et al. 2017. Complex conductivity of soils. Water Resources Research53, 7121–7147.
    [Google Scholar]
  18. SchulmeisterM.K., ButtlerJ.J.Jr., HealeyJ.M., ZhengL., WysockiD.A. and McCallG.W.2003. Direct‐push electric conductivity logging for high‐resolution hydrostratigraphic characterization. Ground Water Monitoring & Remediation23, 52–62.
    [Google Scholar]
  19. SengpielK.P. and SiemonB.2000. Advanced inversion methods for airborne electromagnetics. Geophysics66, 1983–1992.
    [Google Scholar]
  20. SiemonB.2001. Improved and new resistivity‐depth profiles for helicopter electromagnetic data. Journal of Applied Geophysics38, 65–76.
    [Google Scholar]
  21. SiemonB.2006. Electromagnetic methods – frequency domain: airborne techniques. In: Groundwater Geophysics – A Tool for Hydrogeology (ed R.Kirsch ), pp. 155–170, Springer, Berlin.
    [Google Scholar]
  22. SiemonB.2009. Levelling of frequency‐domain helicopter‐borne electromagnetic data. Journal of Applied Geophysics67, 206–218.
    [Google Scholar]
  23. SiemonB.2012. Accurate 1D forward and inverse modelling of high‐frequency helicopter‐borne electromagnetic data. Geophysics77, WB71–WB87.
    [Google Scholar]
  24. SiemonB., AukenE. and ChristiansenA.V.2009. Laterally constrained inversion of frequency‐domain helicopter‐borne electromagnetic data. Journal of Applied Geophysics67, 259–268.
    [Google Scholar]
  25. SiemonB., ChristiansenA.V. and AukenE.2009. A review of helicopter‐borne electromagnetic methods for groundwater exploration. Near Surface Geophysics7, 629–646.
    [Google Scholar]
  26. SiemonB., SteuerA., UllmannA., VasterlingM. and VoßW.2011. Application of frequency‐domain helicopter‐borne electromagnetics for groundwater exploration in urban areas. Journal of Physics and Chemistry of the Earth36/16, 1373–1385.
    [Google Scholar]
  27. SiemonB., CostabelS., VoßW., MeyerU., DeusN., ElbrachtJ.et al. 2015. Airborne and ground geophysical mapping of coastal clays in Eastern Friesland, Germany. Geophysics80, WB21–WB34.
    [Google Scholar]
  28. SiemonB., Ibs‐von SehtM. and PielawaJ.2017. Technischer Bericht Hubschraubergeophysik Befliegung Zeeland, NL, 2014/2015 . BGR report 0134839, Hannover.
  29. SiemonB., Van BaarenE., DabekaussenW., DelsmanJ., GunninkJ., KaraoulisM.et al. 2016. HEM survey in Zeeland (NL) to delineate the 3D groundwater salinity distribution – pilot study: canal zone Gent‐Terneuzen. Proceedings of the 24th Salt Water Intrusion Meeting and 4th Asia‐Pacific Coastal Aquifer Management Meeting, Cairns, Queensland, Australia, July 4–8, 2016, pp. 9–12.
  30. SiemonB., SteuerA., DeusN. and ElbrachtJ.2018. Comparison of manually and automatically derived fresh‐saline groundwater boundaries from helicopter‐borne EM data at the Jade Bay, Northern Germany. 25th Salt Water Intrusion Meeting (SWIM), 2018, E3S Web of Conferences, Vol. 54, p. 6. Gdansk, Poland, June 17–22, 2018.
  31. StafleuJ., MaljersD., GunninkJ.L., MenkovicA. and BusschersF.S.2011. 3D modelling of the shallow subsurface of Zeeland, the Netherlands. Netherlands Journal of Geosciences – Geologie en Mijnbouw90, 293–310.
    [Google Scholar]
  32. SwainC.J.1976. A FORTRAN IV program for interpolating irregularly spaced data using the difference equations for minimum curvature. Computers and Geosciences1, 231–240.
    [Google Scholar]
  33. TølbøllR.J. and ChristensenN.B.2007. Sensitivity functions of frequency‐domain magnetic dipole‐dipole systems. Geophysics72, F45–F56.
    [Google Scholar]
  34. ValleauN.2000. HEM data processing – a practical overview. Exploration Geophysics31, 584–594.
    [Google Scholar]
  35. Van der MeulenM., DoornenbalJ., GunninkJ.L., StafleuJ., SchokkerJ., VernesR.W.et al. 2013. 3D geology in a 2D country: perspectives for geological surveying in the Netherlands. Netherlands Journal of Geosciences – Geologie en Mijnbouw92, 217–241.
    [Google Scholar]
  36. Van RummelenF.F.F.E.1965. Zeeuwsch Vlaanderen, Bladen Zeeuwsch‐Vlaanderen, West en Oost, Toelichting bij de Geologische Kaart van Nederland, 1:50.000. Rijks Geologische Dienst Haarlem, p. 79.
  37. ViezzoliA., ChristiansenA.V., AukenE. and SørensenK.2008. Quasi‐3D modelling of airborne TEM data by spatially constrained inversion. Geophysics73, F105–F113.
    [Google Scholar]
  38. VignoliG., FiandacaG., ChristiansenA.V., KirkegaardC. and AukenE.2015. Sharp spatially constrained inversion with applications to transient electromagnetic data. Geophysical Prospecting63, 243–255.
    [Google Scholar]
  39. Vlaamse Milieumaatschappij
    Vlaamse Milieumaatschappij2016. Verziltingstoestand van het oostelijk kustgebied Resultaten van het elektromagnetisch onderzoek vanuit de lucht (ed. M.van Peteghem ), VMM Report.
  40. VosP.C. and Van HeeringenR.M.1997. Holocene geology and occupation history of the province of Zeeland. In: Holocene Evolution of Zeeland (SW Netherlands), Vol. 59 (ed. M.M.Fischer ), pp. 5–109. Mededelingen/Nederlands Instituut voor Toegepaste Geowetenschappen.
    [Google Scholar]
  41. WaitJ.R.1982. Geo‐electromagnetism. Academic Press, New York.
    [Google Scholar]
  42. WardS.H. and HohmannG.W.1988. Electromagnetic theory for geophysical applications. In: Electromagnetic Methods in Applied Geophysics, Theory, Vol. 1 (ed. M.N.Nabighian ), pp. 130–310. Society of Exploration Geophysics.
    [Google Scholar]
  43. ZagwijnW.H.1989. The Netherlands during the Tertiary and the Quaternary: a case history of Coastal Lowland evolution. Geologie en Mijnbouw68, 107–120.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1002/nsg.12028
Loading
/content/journals/10.1002/nsg.12028
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): Airborne electromagnetics; Conductivity; Fresh–saline interface; Groundwater; Zeeland

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error