1887
Volume 17, Issue 2
  • ISSN: 1569-4445
  • E-ISSN: 1873-0604

Abstract

ABSTRACT

The application of electrical resistivity tomography to peatlands supports conventional coring by providing data on the current condition of peatlands, including data on stratigraphy, peat properties and thickness of organic deposits. Data on the current condition of drained peatlands are particularly required to improve estimates of carbon storage as well as losses and emissions from agriculturally used peatlands. However, most of the studies focusing on electrical resistivity tomography surveys have been conducted on natural peatlands with higher groundwater levels. Peatlands drained for agriculture have not often been studied using geophysical techniques. Drained sites are characterized by low groundwater levels and high groundwater fluctuations during the year, which lead to varying levels of water saturation. To validate better electrical resistivity tomography surveys of drained peatlands, the aim of this laboratory study is to investigate the influence of varying water saturation levels on electrical conductivity (reciprocal of resistivity) for a variety of peat and gyttja types, as well as for different degrees of peat decomposition. Results show that different levels of water saturation strongly influence bulk electrical conductivity. Distinct differences in this relationship exist between peat and gyttja substrates and between different degrees of peat decomposition. Peat shows an exponential relationship for all degrees of decomposition, whereas gyttja, in particular organic‐rich gyttja, is characterized by a rather unimodal relationship. The slopes for the relationship between electrical conductivity and water content are steeper at high degrees of decomposition than for peat of low degrees of decomposition. These results have direct implications for field electrical resistivity tomography surveys. In drained peatlands that are strongly susceptible to drying, electrical resistivity tomography surveys have a high potential to monitor the actual field water content. In addition, at comparable water saturations, high or low degrees of decomposition can be inferred from electrical conductivity.

Loading

Article metrics loading...

/content/journals/10.1002/nsg.12030
2019-01-25
2024-04-16
Loading full text...

Full text loading...

References

  1. AsadiA. and HuatB.B.K.2009. Electrical resistivity of tropical peat. Electronic Journal of Geotechnical Engineering14, 1–9.
    [Google Scholar]
  2. AuerswaldK., SimonS. and StanjekH.2001. Influence of soil properties on electrical conductivity under humid water regimes. Soil Science166, 382–390.
    [Google Scholar]
  3. BridghamS.D., PingC.L., RichardsonJ.L. and UpdegraffK.2001. Soils of northern peatlands: Histosols and Gelisols. In: Wetland Soils: Genesis, Hydrology, Landscapes, and Classification (eds J.L.Richardson and M.J.Vepraskas ), pp. 137–163. Taylor and Francis.
    [Google Scholar]
  4. ChmieleskiJ.2006. Zwischen Niedermoor und Boden: Pedogenetische Untersuchungen und Klassifikation von mitteleuropäischen Mudden (Between Fen and Soil: Pedological Investigation and Classification of Central‐European Gyttjas) . PhD thesis, Humboldt‐ Universität zu Berlin, Germany.
  5. ComasX. and SlaterL.2004. Low‐frequency electrical properties of peat. Water Resources Research40, W12414.
    [Google Scholar]
  6. ComasX., TerryN., SlaterL., WarrenM., KolkaR., KristiyonoA., et al. 2015. Imaging tropical peatlands in Indonesia using ground‐penetrating radar (GPR) and electrical resistivity imaging (ERI): implications for carbon stock estimates and peat soil characterization. Biogeosciences12, 2995–3007.
    [Google Scholar]
  7. DawsonJ.J.C., BilletM.F., HopeD., PalmerS.M. and DeaconC.M.2004. Sources and sinks of aquatic carbon in a peatland stream continuum. Biogeochemistry70, 71–92.
    [Google Scholar]
  8. DBG
    DBG1998. Arbeitskreis Bodensystematik der Deutschen Bodenkundlichen Gesellschaft. Systematik der Böden und der bodenbildenden Substrate Deutschlands. Mitteilung der deutschen bodenkundlichen Gesellschaft86, 1–180.
    [Google Scholar]
  9. Den HaanE.J. and KruseG.A.M.2007. Characterization and engineering properties of Dutch peats. In: Proceedings of the Second International Workshop of Characterization and Engineering Properties of Natural Soils (eds T.S.Tan , K.K.Phoon , D.W.Hight and S.Leroueil ), pp. 2101–2133. Taylor & Francis, Singapore.
    [Google Scholar]
  10. DIN 19684–8
    DIN 19684–8 . 1977. Methods of soil analysis for water management for agricultural purposes; chemical laboratory tests; determination of exchange capacity of a soil and of the amount of exchangeable cations.
  11. DurlesserH.1999. Bestimmung der Variation bodenphysikalischer Parameter in Raum und Zeit mit elektromagnetischen Induktionsverfahren (Variation of soil physical parameters in space and time using electromagnetic induction techniques) . PhD thesis, Technical University of München/Weihenstephan, Germany.
  12. FAO
    FAO . 2015. World reference base for soil resources 2014. International soil classification system for naming soils and creating legends for soil maps. FAO, Rome, Italy.
  13. FellH., RoßkopfN., BauriegelA. and ZeitzJ.2016. Estimating vulnerability of agriculturally used peatlands in north‐east Germany to carbon loss based on multi‐temporal subsidence data analysis. Catena137, 61–69.
    [Google Scholar]
  14. HansonB. and KaitaK.1997. Response of electromagnetic conductivity meter to soil salinity and soil‐water content. Journal of Irrigation and Drainage Engineering123, 141–143.
    [Google Scholar]
  15. JoostenH. and CouwenbergJ.2008. Peatlands and carbon. In: Assessment on Peatlands, Biodiversity and Climate Change: Main Report. (eds F.Parish , A.Sirin , D.Charman , H.Joosten , T.Minayeva , M.Silvius and L.Stringer ), pp. 99–117. Global Environment Centre, Kuala Lumpur; Wetlands International, Wageningen.
    [Google Scholar]
  16. KettridgeN., ComasX., BairdA., SlaterL., StrackM., ThompsonD., et al. 2008. Ecohydrologically important subsurface structures in peatlands revealed by ground‐penetrating radar and complex conductivity surveys. Journal of Geophysical Research113, 1–15.
    [Google Scholar]
  17. KuntzeH.1976. Bodenuntersuchungen zur Düngung von Moorgrünland (Soil Investigations for Fertilization of Grassland on Peatlands). 1. Kali‐Briefe, pp. 1–11.
  18. LückE., GebbersR., RühlmannJ. and SpangenbergU.2009. Electrical conductivity mapping for precision farming. Near Surface Geophysics7, 15–25.
    [Google Scholar]
  19. McKenzieR., ChomistekW. and ClarkN.1989. Conversion of electromagnetic inductance readings to saturated paste extract values in soils for different temperature, texture, and moisture conditions. Canadian Journal of Soil Science69, 25–32.
    [Google Scholar]
  20. MoorFIS
    MoorFIS2014. http://www.geo.brandenburg.de/lbgr/bergbau (last access: 10.01.2018).
  21. PäivänenJ.1973. Hydraulic conductivity and water retention in peat soils. Acta Forestalia Fennica126, 1−69.
    [Google Scholar]
  22. PonzianiM., SlobE.C. and Ngan‐TillardD.J.M.2012. Experimental validation of a model relating water content to the electrical conductivity of peat. Engineering Geology 129–130, 48–55.
    [Google Scholar]
  23. PuustjärviV.1956. On the cation exchange capacity of peats and on the factors of influence upon its formation. Acta Agriculturae Scandinavica6, 410–449.
    [Google Scholar]
  24. RhoadesJ., ChanduviF. and LeschS.1999. Soil salinity assessment: methods and interpretation of electrical conductivity measurements. FAO Irrigation and Drainage Paper 57. Rome, FAO.
  25. RoßkopfN., FellH. and ZeitzJ.2015. Organic soils in Germany, their distribution and carbon stocks. Catena133, 157–170.
    [Google Scholar]
  26. SchindlerU., BehrendtA. and MüllerL.2003. Change of soil hydrological properties of fens as a result of soil development. Journal of Plant Nutrition and Soil Science166, 357–363.
    [Google Scholar]
  27. SchmidtW., WaydbrinkW., MundelG. and ScholzA.1981. Kennzeichnung und Beurteilung der Bodenentwicklung auf Niedermoor unter besonderer Berücksichtigung der Degradierung (Soil development characterisation of fens with respect to soil degradation), Forschungsabschlußbericht IPF Paulinenaueder AdL DDR (124 pp.).
  28. SchulteE.E. and HopkinsB.G.1996. Estimation of organic matter by weight loss‐on ignition. In: Soil Organic Matter: Analysis and Interpretation. (eds F.R.Magdoff , M.A.Tabatabai and E.A.Hanlon ), pp. 21–31. SSSA, Wisconsin.
    [Google Scholar]
  29. SchwalmM. and ZeitzJ.2015. Concentrations of dissolved organic carbon in peat soils as influenced by land use and site characteristics – A lysimeter study. Catena127, 72–79.
    [Google Scholar]
  30. SheetsK.R. and HendrickxJ.M.H.1995. Non‐invasive soil water content measurement using electromagnetic induction. Water Resources Research31, 2401–2409.
    [Google Scholar]
  31. Slater, L.D. and Reeve, A.2002. Investigating peatland stratigraphy and hydrogeology using integrated electrical geophysics. Geophysics67, 365–378.
    [Google Scholar]
  32. TiemeyerB., Albiac BorrazE., AugustinJ., BechtoldM., BeetzS., BeyerC., et al. 2016. High emissions of greenhouse gases from grasslands on peat and other organic soils. Global Change Biology22, 4134–4149.
    [Google Scholar]
  33. von PostL.1922. Sveriges Geologiska Undersöknings torvinventering och några av dess hittills vunna resultat (SGU peat inventory and some preliminary results). Svenska Mosskulturföreningens Tidsskr. 36, 1–37.
  34. WallorE., RoßkopfN. and ZeitzJ.2018. Hydraulic properties of drained and cultivated fen soils part I – Horizon‐based evaluation of van Genuchten parameters considering the state of moorsh‐forming process. Geoderma313, 69–81.
    [Google Scholar]
  35. WalterJ., LückE., BauriegelA., RichterC. and ZeitzJ.2015. Multi‐scale analysis of electrical conductivity of peatlands for the assessment of peat properties. European Journal of Soil Science66, 639–650.
    [Google Scholar]
  36. WalterJ., HamannG., LückE., KlingenfussC. and ZeitzJ.2016. Stratigraphy and soil properties of fens: geophysical case studies from northeastern Germany. Catena142, 112–125.
    [Google Scholar]
  37. WalterJ., LückE., BauriegelA. and ZeitzJ.2018. Seasonal dynamics of soil salinity in peatlands: a geophysical approach. Geoderma310, 1–11.
    [Google Scholar]
  38. ZauftM., FellH., GlaßerF., RoßkopfN. and ZeitzJ.2010. Carbon storage of peatlands in Mecklenburg‐western Pomerania. Mires and Peat6, 1–12.
    [Google Scholar]
  39. ZeitzJ. and VeltyS.2002. Soil properties of drained and rewetted fen soils. Journal of Plant Nutrition and Soil Science165, 618–626.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1002/nsg.12030
Loading
/content/journals/10.1002/nsg.12030
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): Electrical conductivity; Gyttja; Peat

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error