1887
Volume 17, Issue 4
  • ISSN: 1569-4445
  • E-ISSN: 1873-0604

Abstract

ABSTRACT

We study electrical anisotropy using azimuthal electrical resistivity tomography (A‐ERT) for identifying geological layers and determining the preferential aquifer flow direction. The work presented in this paper aims at calculating the anisotropy coefficient from the inverted resistivity measurements, relating the geophysical results to the site geology and water flow direction, and comparing the results with those obtained from prior studies using hydrogeological approaches. The study area is located in the Eastern Mitidja basin, about 15 km east of Algiers. The work carried out includes three measurement points, totalling 24 ERT profiles. For each point, eight A‐ERT profiles, using Wenner–Schlumberger array configuration, were performed every 22.5° around a fixed central point. The data processing includes two‐dimensional inversion of each profile, representation of the inverted resistivities at the central points as a function of the azimuth in polar diagrams, and implementation of an inversion program to determine the best fitting azimuthal anisotropy parameters. The origin of electrical anisotropy is probably due to grain alignment, which is often observed in fine‐grained sediments such as clays and some sands. This alignment creates a higher electrical resistivity perpendicular to the alignment than parallel to it, which is an indicator for higher hydraulic permeability in the minimum resistivity direction, which corresponds to the preferential groundwater flow direction.

Loading

Article metrics loading...

/content/journals/10.1002/nsg.12048
2019-05-26
2020-01-29
Loading full text...

Full text loading...

References

  1. AliA. and JakobsenM.2014. Anisotropic permeability in fractured reservoirs from frequency‐dependent seismic amplitude versus angle and azimuth data. Geophysical Prospecting62, 293–314.
    [Google Scholar]
  2. ANRH (Agence Nationale des Ressources Hydrauliques, Bureau d’étude Energoprojekt Hidroinzenjering)
    ANRH (Agence Nationale des Ressources Hydrauliques, Bureau d’étude Energoprojekt Hidroinzenjering) . 2008. Carte géologique interprétative d'Alger. 1:200.000 scale.
  3. ArnaldssonA., BerthetJ.‐C., KjaranS. and SigurðssonS.Þ.2014. Numerical scheme to simulate flow through anisotropic rocks in TOUGH2. Computers & Geosciences65, 37–45.
    [Google Scholar]
  4. AyméA.1956. Contribution à l’étude de la plaine de la Mitidja occidentale et de sa bordure Atlasique. Bulletin du Service de la Carte Géologique de l'Algérie, No. 347–362.
  5. Batlle‐AguilarJ., SchneiderS., PesselM., TucholkaP., CoquetY. and VachierP.2009. Axisymetrical infiltration in soil imaged by noninvasive electrical resistivimetry. Soil Science Society of America Journal73, 510–520.
    [Google Scholar]
  6. BelaidiM., SadatM. and KahboubeB.2013. Note sur l’évolution de la piézometrie de la nappe de la Mitidja. ANRH report, Algerian Ministry of Water Ressources, Alger.
  7. BenO.I. and OnwuemesiA.G.2009. Estimation of anisotropic properties of fractures in Presco campus of Ebonyi State university Abakaliki, Nigeria using azimuthal resistivity survey method. Journal of Geology and Mining Research1, 172–179.
    [Google Scholar]
  8. BensonP.M., MeredithP.G., PlatzmanE.S. and WhiteR.E.2005. Pore fabric shape anisotropy in porous sandstones and its relation to elastic wave velocity and permeability anisotropy under hydrostatic pressure. International Journal of Rock Mechanics and Mining Sciences42, 890–899.
    [Google Scholar]
  9. BerdjaF., MekidecheD. and BelaidiM.2010. Note sur la lutte contre l'intrusion marine dans la baie d'Alger. ANRH report, Algerian Ministry of Water Ressources, Alger.
  10. BondC.E., WightmanR. and RingroseP.S.2013. The influence of fracture anisotropy on CO2 flow. Geophysical Research Letters40, 1284–1289.
    [Google Scholar]
  11. ChristensenN.B.2000. Difficulties in determining electrical anisotropy in subsurface investigations. Geophysical Prospecting48, 1–19.
    [Google Scholar]
  12. CirpkaO.A. and ValocchiA.J.2016. Debates—stochastic subsurface hydrology from theory to practice: does stochastic subsurface hydrology help solving practical problems of contaminant hydrogeology?Water Resources Research52, 9218–9227.
    [Google Scholar]
  13. ClavaudJ.‐B., MaineultA., ZamoraM., RasolofosaonP. and SchlitterC.2008. Permeability anisotropy and its relations with porous medium structure. Journal of Geophysical Research113. https://doi.org/10.1029/2007JB005004.
    [Google Scholar]
  14. ColletO. and GurevichB.2016. Frequency dependence of anisotropy in fluid saturated rocks—Part I: aligned cracks case. Geophysical Prospecting64, 1067–1084.
    [Google Scholar]
  15. DewandelB., AunayB., MaréchalJ.C., RoquesC., BourO., MouginB.et al. 2014. Analytical solutions for analysing pumping tests in a sub‐vertical and anisotropic fault zone draining shallow aquifers. Journal of Hydrology509, 115–131.
    [Google Scholar]
  16. EllisM., SinhaM. and ParrR.2010. Role of fine‐scale layering and grain alignment in the electrical anisotropy of marine sediments. First Break28, 49–57.
    [Google Scholar]
  17. GeorgeA.M., OkwuezeE.E. and AbongA.A.2014. Azimuthal square array resistivity sounding of shallow subsurface fracture distribution in parts of the eastern basement complex of Nigeria. British Journal of Earth Sciences Research2, 1–18.
    [Google Scholar]
  18. GlangeaudL.1952. Histoire géologique de la province d'Alger. IV International Geological Congress. Monography of Algiers region. ANRH, Alger.
  19. GreenhalghS.A., MarescotL., ZhouB., GreenhalghM. and WieseT.2009. Electric potential and Frechet derivatives for a uniform anisotropic medium with a tilted axis of symmetry. Pure and Applied Geophysics166, 673–699.
    [Google Scholar]
  20. HabberjamG.M.1972. The effects of anisotropy on square array resistivity measurements. Geophysical Prospecting20, 249–266.
    [Google Scholar]
  21. HabberjamG.M.1975. Apparent resistivity, anisotropy and strike measurements. Geophysical Prospecting23, 211–247.
    [Google Scholar]
  22. HabberjamG.M. and WatkinsG.E.1967. The use of a square configuration in resistivity prospecting. Geophysical Prospecting15, 445–467.
    [Google Scholar]
  23. KellerG.V. and FrischknechtF.C.1966. Electrical methods in geophysical prospecting. Pergamon Press, Oxford, UK.
    [Google Scholar]
  24. KirkbyA. and HeinsonG.2017. Three‐dimensional resistor network modeling of the resistivity and permeability of fractured rocks. Journal of Geophysical Research122, 2653–2669.
    [Google Scholar]
  25. LaneJ.W., HaeniF.P. and WatsonW.M.1995. Use of a square‐array direct‐current resistivity method to detect fractures in crystalline bedrock in New Hampshire. Groundwater33, 476–485.
    [Google Scholar]
  26. LokeM.H. and BarkerR.D.1995. Least‐squares deconvolution of apparent resistivity pseudo sections. Geophysics60, 1682–1690.
    [Google Scholar]
  27. LokeM.H. and BarkerR.D.1996. Rapid least‐square inversion of apparent resistivity pseudo sections by a quasi‐Newton method. Geophysical Prospecting44, 131–152.
    [Google Scholar]
  28. MimouniO.2010. Les eaux de la région d'Alger: Risques de pollution et d'inondation. PhD thesis, University of Science and Technology Houari Boumédienne, Algiers, Algeria.
  29. NorthL.J. and BestA.I.2014. Anomalous electrical resistivity anisotropy in clean reservoir sandstones. Geophysical Prospecting62, 1315–1326.
    [Google Scholar]
  30. OdohB.I.2010. Electro‐hydraulic anisotropy of fractures in parts of Abakaliki, Ebonyi State, Nigeria using ARS method. International Archive of Applied Sciences and Technology1, 10–19.
    [Google Scholar]
  31. OldenburgD.W. and LiY.1999. Estimating depth of investigation in DC resistivity and IP surveys. Geophysics64, 403–416.
    [Google Scholar]
  32. ÖzgenI., ZhaoJ., LiangD. and HinkelmannR.2016. Urban flood modeling using shallow water equations with depth‐dependent anisotropic porosity. Journal of Hydrology541, 1165–1184.
    [Google Scholar]
  33. RitziR. and AndolsekR.1992. Relation between anisotropic transmissivity and azimuthal resistivity surveys in shallow, fractured, carbonate flow systems. Groundwater30, 774–780.
    [Google Scholar]
  34. RivaM., NeumanS.P., GuadagniniA. and SienaM.2013. Anisotropic scaling of Berea sandstone log air permeability statistics. Vadose Zone Journal12(3). https://doi.org/10.2136/vzj2012.0153.
    [Google Scholar]
  35. SauckW.A. and ZabikS.M.1992. Azimuthal resistivity techniques and the directional variations of hydraulic conductivity in glacial sediments. In: Symposium on the Application of Geophysics to Engineering and Environmental Problems: Society of Engineering and Mineral Exploration Geophysicists, (ed R.S.Bell), pp. 197–222. EEGS (Environmental and Engineering Geophysical Society), Denver, CO, USA.
    [Google Scholar]
  36. TaylorR.W. and FlemingA.H.1988. Characterizing jointed systems by azimuthal resistivity surveys. Groundwater26(4), 464–474.
    [Google Scholar]
  37. ToubalA.C.1998. Apport de la géophysique à l’étude des problèmes d'hydrodynamique et d'invasion marine en milieu souterrain. Exemple des plaines d'Annaba, de la Mitidja et de la Baie d'Alger. These d’état, IST‐USTHB, Algier.
  38. WangZ., GeliusL.‐J. and KongF.‐N.2009. Simultaneous core sample measurements of elastic properties and resistivity at reservoir conditions employing a modified triaxial cell—a feasibility study. Geophysical Prospecting57(6), 1009–1026.
    [Google Scholar]
  39. WatsonK.A. and BarkerR.D.1999. Differentiating anisotropy and lateral effects using azimuthal resistivity offset Wenner soundings. Geophysics64, 739–745.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1002/nsg.12048
Loading
/content/journals/10.1002/nsg.12048
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): Anisotropy , Aquifer , ERT , Hydrogeophysics and Resistivity
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error