1887
Volume 17, Issue 5
  • ISSN: 1569-4445
  • E-ISSN: 1873-0604

Abstract

ABSTRACT

In most shallow‐seismic applications of full‐waveform inversion, the subsurface is assumed to be isotropic, although near‐surface materials may exhibit strong seismic anisotropy. Ignoring anisotropy will lead to inexact solutions when simulating wave propagation or imaging the subsurface using full‐waveform inversion. For shallow structures, vertically transversely isotropic media provide a suitable approximation due to the fine horizontal layering of the sediments. We investigate the effects of anisotropy on surface waves and on shallow‐seismic full‐waveform inversion in vertically transversely isotropic media. The comparisons of seismograms calculated in isotropic and vertically transversely isotropic models show that the sensitivity of full‐waveform inversion towards anisotropy is significantly higher for Love waves than for Rayleigh waves. This observation indicates that it is more promising to perform full‐waveform inversion on Love waves rather than on Rayleigh waves to identify anisotropy of near‐surface materials. Therefore, we performed synthetic two‐dimensional reconstruction tests of anisotropic full‐waveform inversion using only shallow‐seismic Love waves. These tests revealed that the parameters describing vertical transverse isotropy can be accurately reconstructed by full‐waveform inversion. Although the inversion for density is still problematic, this does not affect the results for the seismic velocities in a significant way. The tests on synthetic data thus prove the general applicability and the benefits of an anisotropic inversion of shallow‐seismic Love waves, which can provide a more comprehensive subsurface characterization in shallow anisotropic media.

Loading

Article metrics loading...

/content/journals/10.1002/nsg.12061
2019-08-21
2020-03-30
Loading full text...

Full text loading...

References

  1. AndrusR.D. and StokoeK.H., II. 2000. Liquefaction resistance of soils from shear‐wave velocity. Journal of Geotechnical and Geoenvironmental Engineering126, 1015–1025.
    [Google Scholar]
  2. BabuskaV. and CaraM.1991. In: Seismic Anisotropy in the Earth, Vol. 10. Springer.
    [Google Scholar]
  3. BergamoP., BoieroD. and SoccoL.V.2012. Retrieving 2D structures from surface‐wave data by means of space‐varying spatial windowing. Geophysics77, EN39–EN51.
    [Google Scholar]
  4. BertsekasD.1982. Constrained Optimization and Lagrange Multiplier Methods. Elsevier.
    [Google Scholar]
  5. BohlenT.2002. Parallel 3‐D viscoelastic finite difference seismic modelling. Computers & Geosciences28, 887–899.
    [Google Scholar]
  6. BohlenT., KuglerS., KleinG. and TheilenF.2004. 1.5D inversion of lateral variation of Scholte‐wave dispersion. Geophysics69, 330–344.
    [Google Scholar]
  7. BohlenT., RabbelW., WeissT., SiegesmundS. and PohlM.1999. Recovering shear‐wave anisotropy of the lower crust: the influence of systematic errors on travel‐time inversion. Pure and Applied Geophysics156, 123–138.
    [Google Scholar]
  8. BunksC., SaleckF.M., ZaleskiS. and ChaventG.1995. Multiscale seismic waveform inversion. Geophysics60, 1457–1473.
    [Google Scholar]
  9. DobryR., BorcherdtR.D., CrouseC.B., IdrissI.M., JoynerW.B., MartinG.R.et al. 2000. New site coefficients and site classification system used in recent building seismic code provisions. Earthquake Spectra16, 41–67.
    [Google Scholar]
  10. DokterE., KöhnD., WilkenD., de NilD. and RabbelW.2017. Full waveform inversion of SH‐ and Love‐wave data in near‐surface prospecting. Geophysical Prospecting65, 216–236.
    [Google Scholar]
  11. FichtnerA.2011. Full Seismic Waveform Modelling and Inversion. Springer.
    [Google Scholar]
  12. ForbrigerT.2003. Inversion of shallow‐seismic wavefields: II. Inferring subsurface properties from wavefield transforms. Geophysical Journal International153, 735–752.
    [Google Scholar]
  13. GrayS.H., EtgenJ., DellingerJ. and WhitmoreD.2001. Seismic migration problems and solutions. Geophysics66, 1622–1640.
    [Google Scholar]
  14. GrechkaV. and MateevaA.2007. Inversion of P‐wave VSP data for local anisotropy: theory and case study. Geophysics72, D69–D79.
    [Google Scholar]
  15. GroosL., SchäferM., ForbrigerT. and BohlenT.2017. Application of a complete workflow for 2D elastic full‐waveform inversion to recorded shallow‐seismic Rayleigh waves. Geophysics82, R109–R117.
    [Google Scholar]
  16. HelbigK.1983. Elliptical anisotropy – its significance and meaning. Geophysics48, 825–832.
    [Google Scholar]
  17. JeongW., LeeH.‐Y. and MinD.‐J.2012. Full waveform inversion strategy for density in the frequency domain. Geophysical Journal International188, 1221–1242.
    [Google Scholar]
  18. KöhnD., HellwigO., de NilD. and RabbelW.2015. Waveform inversion in triclinic anisotropic media – a resolution study. Geophysical Journal International201, 1642–1656.
    [Google Scholar]
  19. KöhnD., WilkenD., de NilD., WunderlichT., RabbelW., WertherL.et al. 2019. Comparison of time‐domain SH waveform inversion strategies based on sequential low and bandpass filtered data for improved resolution in near‐surface prospecting. Journal of Applied Geophysics160, 69–83.
    [Google Scholar]
  20. KoulakovI., JakovlevA. and LuehrB.G.2009. Anisotropic structure beneath central Java from local earthquake tomography. Geochemistry, Geophysics, Geosystems10, 1–31.
    [Google Scholar]
  21. LiuQ. and TrompJ.2006. Finite‐frequency kernels based on adjoint methods. Geophysics96, 2383–2397.
    [Google Scholar]
  22. MiB., XiaJ., ShenC., WangL., HuY. and ChengF.2017. Horizontal resolution of multichannel analysis of surface waves. Geophysics82, EN51–EN66.
    [Google Scholar]
  23. NocedalJ. and WrightS.J.2006. Numerical optimization. Springer.
    [Google Scholar]
  24. OhJ.‐W. and AlkhalifahT.2016. Elastic orthorhombic anisotropic parameter inversion: an analysis of parameterization. Geophysics81, C279–C293.
    [Google Scholar]
  25. PanY., GaoL. and BohlenT.2018. Time‐domain full‐waveform inversion of Rayleigh and Love waves in presence of free‐surface topography. Journal of Applied Geophysics152, 77–85.
    [Google Scholar]
  26. Pan, Y., Gao, L. and Bohlen, T.2019. High‐resolution characterization of near‐surface structures by surface‐wave inversions: from dispersion curve to full waveform. Surveys in Geophysics40, 167–195.
    [Google Scholar]
  27. PanY., SchanengS., SteinwegT. and BohlenT.2018. Estimating S‐wave velocities from 3D 9‐component shallow seismic data using local Rayleigh‐wave dispersion curves – a field study. Journal of Applied Geophysics159, 532–39.
    [Google Scholar]
  28. PanY., XiaJ., XuY., GaoL. and XuZ.2016. Love‐wave waveform inversion in time domain for shallow shear‐wave velocity. Geophysics81, R1–R14.
    [Google Scholar]
  29. ParkC.B., MillerR.D. and XiaJ.1999. Multichannel analysis of surface waves. Geophysics64, 800–808.
    [Google Scholar]
  30. PlessixR.‐E.2006. A review of the adjoint‐state method for computing the gradient of a functional with geophysical applications. Geophysical Journal International167, 495–503.
    [Google Scholar]
  31. PrieuxV., BrossierR., GholamiY., OpertoS., VirieuxJ., BarkvedO.I.et al. 2011. On the footprint of anisotropy on isotropic full waveform inversion: the Valhall case study. Geophysical Journal International187, 1495–1515.
    [Google Scholar]
  32. PrieuxV., BrossierR., OpertoS. and VirieuxJ.2013. Multiparameter full waveform inversion of multicomponent ocean‐bottom‐cable data from the Valhall field. Part 1: imaging compressional wave speed, density and attenuation. Geophysical Journal International194, 1640–1664.
    [Google Scholar]
  33. SearsT.J., BartonP.J. and SinghS.C.2010. Elastic full waveform inversion of multicomponent ocean‐bottom cable seismic data: application to Alba Field, U. K. North Sea. Geophysics75, R109–R119.
    [Google Scholar]
  34. SoccoL.V., FotiS. and BoieroD.2010. Surface‐wave analysis for building near‐surface velocity models – established approaches and new perspectives. Geophysical Journal International75, 75A83–75A102.
    [Google Scholar]
  35. TarantolaA.1984. Inversion of seismic reflection data in the acoustic approximation. Geophysics49, 1259–1266.
    [Google Scholar]
  36. ThomsenL.1986. Weak elastic anisotropy. Geophysics51, 1954–1966.
    [Google Scholar]
  37. TranK.T., McVayM., FaraoneM. and HorhotaD.2013. Sinkhole detection using 2D full seismic waveform tomography. Geophysics78, R175–R183.
    [Google Scholar]
  38. TsvankinI., GaiserJ., GrechkaV., van der BaanM. and ThomsenL.2010. Seismic anisotropy in exploration and reservoir characterization: an overview. Geophysics75, 75A15–75A29.
    [Google Scholar]
  39. van der BaanM. and KendallJ.M.2002. Estimating anisotropy parameters and traveltimes in the τ‐ p domain. Geophysics67, 1076–1086.
    [Google Scholar]
  40. VerwestB.J.1989. Seismic migration in elliptically anisotropic media. Geophysical Prospecting37, 149–166.
    [Google Scholar]
  41. VirieuxJ., AsnaashariA., BrossierR., MétivierL., RibodettiA. and ZhouW.2017. An introduction to full waveform inversion. In: Encyclopedia of Exploration Geophysics (eds. V.Grechka and K.Wapenaar), pp. R1-1–R1-40.
    [Google Scholar]
  42. WarnerM., RatcliffeA., NangooT., MorganJ., UmplebyA., ShahN.et al. 2013. Anisotropic 3D full‐waveform inversion. Geophysical Prospecting78, R59–R80.
    [Google Scholar]
  43. WillsC.J.2000. A site‐conditions map for California based on geology and shear‐wave velocity. Bulletin of the Seismological Society of America90, S187–S208.
    [Google Scholar]
  44. WittkampF., AthanasopoulosA. and BohlenT.2009. Individual and joint 2‐D elastic full‐waveform inversion of Rayleigh and Love waves. Geophysical Journal International216, 350–364.
    [Google Scholar]
  45. XiaJ.2014. Estimation of near‐surface shear‐wave velocities and quality factors using multichannel analysis of surface‐wave methods. Journal of Applied Geophysics103, 140–151.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1002/nsg.12061
Loading
/content/journals/10.1002/nsg.12061
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): Anisotropy , Inversion , Seismic , Shallow Subsurface and Surface wave
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error