1887
Volume 17 Number 6
  • ISSN: 1569-4445
  • E-ISSN: 1873-0604

Abstract

ABSTRACT

This paper provides an update on the fast‐evolving field of the induced polarization method applied to biogeophysics. It emphasizes recent advances in the understanding of the induced polarization signals stemming from biological materials and their activity, points out new developments and applications, and identifies existing knowledge gaps. The focus of this review is on the application of induced polarization to study living organisms: soil microorganisms and plants (both roots and stems). We first discuss observed links between the induced polarization signal and microbial cell structure, activity and biofilm formation. We provide an up‐to‐date conceptual model of the electrical behaviour of the microbial cells and biofilms under the influence of an external electrical field. We also review the latest biogeophysical studies, including work on hydrocarbon biodegradation, contaminant sequestration, soil strengthening and peatland characterization. We then elaborate on the induced polarization signature of the plant‐root zone, relying on a conceptual model for the generation of biogeophysical signals from a plant‐root cell. First laboratory experiments show that single roots and root system are highly polarizable. They also present encouraging results for imaging root systems embedded in a medium, and gaining information on the mass density distribution, the structure or the physiological characteristics of root systems. In addition, we highlight the application of induced polarization to characterize wood and tree structures through tomography of the stem. Finally, we discuss up‐ and down‐scaling between laboratory and field studies, as well as joint interpretation of induced polarization and other environmental data. We emphasize the need for intermediate‐scale studies and the benefits of using induced polarization as a time‐lapse monitoring method. We conclude with the promising integration of induced polarization in interdisciplinary mechanistic models to better understand and quantify subsurface biogeochemical processes.

Loading

Article metrics loading...

/content/journals/10.1002/nsg.12072
2019-12-05
2024-04-25
Loading full text...

Full text loading...

References

  1. Abdel AalG.Z., AtekwanaE.A. and AtekwanaE.A.2010. Effect of bioclogging in porous media on complex conductivity signatures. Journal of Geophysical Research: Biogeosciences115, G00G07.
    [Google Scholar]
  2. Abdel AalG.Z., AtekwanaE.A., RadzikowskiS. and RossbachS.2009. Effect of bacterial adsorption on low frequency electrical properties of clean quartz sands and iron‐oxide coated sands. Geophysical Research Letters36, L04403.
    [Google Scholar]
  3. Abdel AalG.Z., AtekwanaE.A., SlaterL.D. and AtekwanaE.A.2004. Effects of microbial processes on electrolytic and interfacial electrical properties of unconsolidated sediments. Geophysical Research Letters31, L12505.
    [Google Scholar]
  4. AlbrechtR., GourryJ.C., SimonnotM.‐O. and LeyvalC.2011. Complex conductivity response to microbial growth and biofilm formation on phenanthrene spiked medium. Journal of Applied Geophysics75, 558–564.
    [Google Scholar]
  5. Al HagreyS.A.2006. Electrical resistivity imaging of tree trunks. Near Surface Geophysics4, 179–187.
    [Google Scholar]
  6. AnneserB., EinsiedlF., MeckenstockR.U., RichtersL., WisotzkyF. and GrieblerC.2008. High‐resolution monitoring of biogeochemical gradients in a tar oil‐contaminated aquifer. Applied Geochemistry23, 1715–1730.
    [Google Scholar]
  7. AtekwanaE.A. and AtekwanaE.A.2010. Geophysical signatures of microbial activity at hydrocarbon contaminated sites: a review. Surveys in Geophysics31, 247–283.
    [Google Scholar]
  8. AtekwanaE.A., AtekwanaE.A., RoweR.S., WerkemaD.D. and LegallF.D.2004a. The relationship of total dissolved solids measurements to bulk electrical conductivity in an aquifer contaminated with hydrocarbon. Journal of Applied Geophysics56, 281–294.
    [Google Scholar]
  9. AtekwanaE.A., SauckW.A. and WerkemaD.D.2000. Investigations of geoelectrical signatures at a hydrocarbon contaminated site. Journal of Applied Geophysics44, 167–180.
    [Google Scholar]
  10. AtekwanaE.A. and SlaterL.D.2009. Biogeophysics: a new frontier in earth science research. Reviews of Geophysics47, RG4004.
    [Google Scholar]
  11. AtekwanaE.A., WerkemaD.D., DurisJ.W., RossbachS., AtekwanaE.A., SauckW.A., et al. 2004b. In‐situ apparent conductivity measurements and microbial population distribution at a hydrocarbon‐contaminated site. 69, 56–63.
  12. AvisT.J., GravelV., AntounH., TweddellR.J.2008. Multifaceted beneficial effects of rhizosphere microorganisms on plant health and productivity. Soil Biology and Biochemistry40, 1733–1740.
    [Google Scholar]
  13. BabautaJ., RenslowR., LewandowskiZ. and BeyenalH.2012. Electrochemically active biofilms: facts and fiction. A review. Biofouling28, 789–812.
    [Google Scholar]
  14. BarsoukovE. and MacdonaldJ.R.2018. Impedance Spectroscopy: Theory, Experiment, and Applications, 3rd edn.Wiley.
    [Google Scholar]
  15. BartholomewJ.W. and MittwerT.1952. The gram stain. Bacteriological Reviews16, 1.
    [Google Scholar]
  16. BaszkinA. and NordeW.1999. Physical Chemistry of Biological Interfaces. CRC Press. 823 pp.
    [Google Scholar]
  17. BenedettiM., Van RiemsdijkW. and KoopalL.1996. Humic substances considered as a heterogeneous Donnan gel phase. Environmental Science and Technology30, 1805–1813.
    [Google Scholar]
  18. BeraT.K.2014. Bioelectrical impedance methods for noninvasive health monitoring: a review. Journal of Medical Engineering2014, 1–28.
    [Google Scholar]
  19. BerlangaM. and GuerreroR.2016. Living together in biofilms: the microbial cell factory and its biotechnological implications. Microbial Cell Factories15, 165.
    [Google Scholar]
  20. BermejoJ.L., SauckW.A. and AtekwanaE.A.1997. Geophysical discovery of a new LNAPL plume at the former Wurtsmith AFB, Oscoda, Michigan. Ground Water Monitoring and Remediation17, 131–137.
    [Google Scholar]
  21. BeyenalH. and BabautaJ.T.2015. Biofilms in Bioelectrochemical Systems: From Laboratory Practice to Data Interpretation. Hoboken, NJ: John Wiley & Sons.
    [Google Scholar]
  22. BiekerD. and RustS.2010. Non‐destructive estimation of sapwood and heart‐wood width in Scots pine (Pinus sylvestris L.). Silva Fennica44, 267–273.
    [Google Scholar]
  23. BiekerD., KehrR., WeberG. and RustS.2010. Non‐destructive monitoring of early stages of white rot by Trametes versicolor in Fraxinus excelsior. Annals of Forest Science67, 210, 1–7.
    [Google Scholar]
  24. BinleyA. and KemnaA.2005. DC resistivity and induced polarization methods. In Hydrogeophysics, pp. 129–56. Dordrecht: Springer Netherlands.
    [Google Scholar]
  25. BodelierP.L.E. and DedyshS.N.2013. Microbiology of wetlands. Frontiers in Microbiology4, 79.
    [Google Scholar]
  26. BondD.R., Strycharz‐GlavenS.M., TenderL.M. and TorresC.I.2012. On electron transport through Geobacter biofilms. Chemsuschem5, 1099–1105.
    [Google Scholar]
  27. BoroleA.P., RegueraG., RingeisenB., WangZ.‐W., FengY. and KimB.H.2011. Electroactive biofilms: current status and future research needs. Energy and Environmental Science4, 4813–4834.
    [Google Scholar]
  28. BrandtM. and RinnF.1989. Eine Übersicht über Verfahren zur Stammfäulediagnose. Holz‐Zentralblatt80, 1268–1270.
    [Google Scholar]
  29. BreedeK., KemnaA., EsserO., ZimmermannE., VereeckenH. and HuismanJ.A.2012. Spectral induced polarization measurements on variably saturated sand‐clay mixtures. Near Surface Geophysics10, 479–489.
    [Google Scholar]
  30. BückerM., Flores‐OrozcoA.F., HördtA. and KemnaA.2017. An analytical membrane‐polarization model to predict the complex conductivity signature of immiscible liquid hydrocarbon contaminants. Near Surface Geophysics15, 547–562.
    [Google Scholar]
  31. BückerM., Flores‐OrozcoA. and KemnaA.2018. Electrochemical polarization around metallic particles – Part 1: The role of diffuse‐layer and volume‐diffusion relaxation. Geophysics83, E203–E217.
    [Google Scholar]
  32. BückerM. and HördtA.2013. Analytical modelling of membrane polarization with explicit parametrization of pore radii and the electrical double layer. Geophysical Journal International194, 804–813.
    [Google Scholar]
  33. BückerM., UndorfS., Flores‐OrozcoA. and KemnaA.2019. Electrochemical polarization around metallic particles – Part 2: The role of diffuse surface charge. Geophysics84, E57–E73.
    [Google Scholar]
  34. CaoY., RepoT., SilvennoinenR., LehtoT. and PelkonenP.2011. Analysis of the willow root system by electrical impedance spectroscopy. Journal of Experimental Botany62, 351–358.
    [Google Scholar]
  35. CarstensenE. and MarquisR.1968. Passive electrical properties of microorganisms: III. Conductivity of isolated bacterial cell walls. Biophysical Journal8, 536–548.
    [Google Scholar]
  36. CassianiG., BinleyA., KemnaA., WehrerM., Flores‐OrozcoA., DeianaR., et al. 2014. Noninvasive characterization of the Trecate (Italy) crude‐oil contaminated site: links between contamination and geophysical signals. Environmental Science and Pollution Research21, 8914–8931.
    [Google Scholar]
  37. CassianiG., BoagaJ., VanellaD., PerriM.T. and ConsoliS.2015. Monitoring and modelling of soil–plant interactions: the joint use of ERT, sap flow and eddy covariance data to characterize the volume of an orange tree root zone. Hydrology and Earth System Sciences19, 2213–2225.
    [Google Scholar]
  38. ChloupekO.1972. The relationship between electrical capacitance and some other parameters of plant root. Biologia Plantarum14, 227–230.
    [Google Scholar]
  39. ClaessensJ., BehrendsT. and Van CappellenP.2004. What do acid‐base titrations of live bacteria tell us? A preliminary assessment. Aquatic Sciences66, 19–26.
    [Google Scholar]
  40. ColeK.S. and ColeR.H.1941. Dispersion and absorption in dielectrics I. Alternating current characteristics. The Journal of Chemical Physics9, 341–351.
    [Google Scholar]
  41. ColwellF.S., SmithR.W., FerrisF.G., ReysenbachA.‐L., FujitaY., TylerT.L., et al. 2005. Microbial mediated subsurface calcite precipitation for removal of hazardous divalent cations: microbial activity, molecular biology, and modeling. In Subsurface Contamination Remediation: Accomplishments of the Environmental Management Science Program, Vol. 904 (eds E.Berkey and T.Zachary), pp. 117–137. Washington: American Chemical Society.
    [Google Scholar]
  42. DahlinT. and LerouxV.2012. Improvement in time‐domain induced polarization data quality with multi‐electrode systems by separating current and potential cables. Near Surface Geophysics10, 545–565.
    [Google Scholar]
  43. DahlinT., LerouxV. and NissenJ.2002. Measuring techniques in induced polarisation imaging. Journal of Applied Geophysics50, 279–298.
    [Google Scholar]
  44. DahlinT. and ZhouB.2006. Multiple‐gradient array measurements for multichannel 2D resistivity imaging. Near Surface Geophysics4, 113–123.
    [Google Scholar]
  45. DaltonF.N.1995. In‐situ root extent measurements by electrical capacitance methods. Plant and Soil173, 157–165.
    [Google Scholar]
  46. DavisC.A., AtekwanaE.A., AtekwanaE.A., SlaterL.D., RossbachS. and MormileM.R.2006. Microbial growth and biofilm formation in geologic media is detected with complex conductivity measurements. Geophysical Research Letters33, L18403.
    [Google Scholar]
  47. DavisC.A., Pyrak‐NolteL.J., AtekwanaE.A., WerkemaD.D. and HaugenM.E.2010. Acoustic and electrical property changes due to microbial growth and biofilm formation in porous media. Journal of Geophysical Research: Biogeosciences115, 1–14.
    [Google Scholar]
  48. DeceusterJ. and KaufmannO.2012. Improving the delineation of hydrocarbon‐impacted soils and water through induced polarization (IP) tomographies: a field study at an industrial wasteland. Journal of Contaminant Hydrology136, 25–42.
    [Google Scholar]
  49. DeJongJ.T., MortensenB.M., MartinezB.C. and NelsonD.C.2010. Bio‐mediated soil improvement. Ecological Engineering36, 197–210.
    [Google Scholar]
  50. DeJongJt., SogaK., KavazanjianE., BurnsS., Van PaassenL.A., Al QabanyA., et al. 2013. Biogeochemical processes and geotechnical applications: progress, opportunities and challenges. Géotechnique63, 287–301.
    [Google Scholar]
  51. DhamiN.K., ReddyM.S. and MukherjeeA.2013. Biomineralization of calcium carbonates and their engineered applications: a review. Frontiers in Microbiology4, 314.
    [Google Scholar]
  52. DietrichR.C., BengoughA.G., JonesH.G. and WhiteP.J.2012. A new physical interpretation of plant root capacitance. Journal of Experimental Botany63, 6149–6159.
    [Google Scholar]
  53. DietrichR.C., BengoughA.G., JonesH.G. and WhiteP.J.2013. Can root electrical capacitance be used to predict root mass in soil?Annals of Botany112, 457–464.
    [Google Scholar]
  54. Dominguez‐BenettonX., SevdaS., VanbroekhovenK. and PantD.2012. The accurate use of impedance analysis for the study of microbial electrochemical systems. Chemical Society Reviews41, 7228–7246.
    [Google Scholar]
  55. DonlanR.M.2002. Biofilms: microbial life on surfaces. Emerging infectious diseases. Emerging Infectious Diseases8, 881.
    [Google Scholar]
  56. EhosiokeS., GarréS., KremerT., RaoS., KemnaA., HuismanJ.A., et al. 2018. A new method for characterizing the complex electrical properties of root segments. Abstract (Oral) presented at the ISRR‐10 ‘Exposing the hidden half’, Ma'ale HaHamisha, Israel, 8–12 July 2018.
  57. FangC., SmithP., SmithJ.U. and MoncrieffJ.B.2005. Incorporating microorganisms as decomposers into models to simulate soil organic matter decomposition. Geoderma129, 139–146.
    [Google Scholar]
  58. FernandezP.M., BinleyA., BloemE. and FrenchH.K.2018. Laboratory spectral induced polarisation signatures associated with iron and manganese oxide dissolution because of anaerobic degradation. Journal of Contaminant Hydrology221, 1–10.
    [Google Scholar]
  59. FiandacaG., AukenE., Vest ChristiansenA. and GazotyA.2012. Time‐domain‐induced polarization: full‐decay forward modeling and 1D laterally constrained inversion of Cole‐Cole parameters. Geophysics77, E213–E225.
    [Google Scholar]
  60. FiandacaG., RammJ., BinleyA., GazotyA., ChristiansenA.V. and AukenE.2013. Resolving spectral information from time domain induced polarization data through 2‐D inversion. Geophysical Journal International192, 631–646.
    [Google Scholar]
  61. Flores‐OrozcoA., GallistlJ., BückerM. and WilliamsK.H.2018. Decay curve analysis for data error quantification in time‐domain induced polarization imaging. Geophysics83, E75–E86.
    [Google Scholar]
  62. Flores‐OrozcoA., KemnaA., OberdörsterC., ZschornackL., LevenC., DietrichP., et al. 2012. Delineation of subsurface hydrocarbon contamination at a former hydrogenation plant using spectral induced polarization imaging. Journal of Contaminated Hydrology136, 131–144.
    [Google Scholar]
  63. Flores‐OrozcoA., VelimirovicM., ToscoT., KemnaA., SapionH., KlaasN., et al. 2015. Monitoring the injection of microscale zerovalent iron particles for groundwater remediation by means of complex electrical conductivity imaging. Environmental Science and Technology49, 5593–5600.
    [Google Scholar]
  64. Flores‐OrozcoA., WilliamsK.H. and KemnaA.2013. Time‐lapse spectral induced polarization imaging of stimulated uranium bioremediation. Near Surface Geophysics11, 531–544.
    [Google Scholar]
  65. Flores‐OrozcoA., WilliamsK.H., LongP.E., HubbardS.S. and KemnaA.2011. Using complex resistivity imaging to infer biogeochemical processes associated with bioremediation of an uranium‐contaminated aquifer. Journal of Geophysical Research: Biogeosciences116, 2156–2206.
    [Google Scholar]
  66. FosterK.R. and SchwanH.P.1989. Dielectric properties of tissues and biological materials: a critical review. Critical Reviews in Biomedical Engineering17, 25–104.
    [Google Scholar]
  67. FröhlichH.1975. The extraordinary dielectric properties of biological materials and the action of enzymes. Proceedings of the National Academy of Sciences of the United States of America72, 4211–4215.
    [Google Scholar]
  68. FujitaY., TaylorJ.L., GreshamT.L.T., DelwicheM.E., ColwellF.S., MclingT.L., et al. 2008. Stimulation of microbial urea hydrolysis in groundwater to enhance calcite precipitation. Environmental Science and Technology42, 3025–3032.
    [Google Scholar]
  69. FujitaY., TaylorJ.L., WendtL.M., ReedD.W. and SmithR.W.2010. Evaluating the potential of native ureolytic microbes to remediate a 90Sr contaminated environment. Environmental Science and Technology44, 7652–7658.
    [Google Scholar]
  70. GallistlJ., WeigandM., StumvollM., OttowitzD., GladeT. and Flores‐OrozcoA.2018. Delineation of subsurface variability in clay‐rich landslides through spectral induced polarization imaging and electromagnetic methods. Engineering Geology245, 292–308.
    [Google Scholar]
  71. GarréS., JavauxM., VanderborghtJ., PagèsL. and VereeckenH.2011. Three‐dimensional electrical resistivity tomography to monitor root zone water dynamics. Vadose Zone Journal10, 412–424.
    [Google Scholar]
  72. GhestemM., SidleR.C. and StokesA.2011. The Influence of plant root systems on subsurface flow: implications for slope stability. Bioscience61, 869–879.
    [Google Scholar]
  73. GraystonS.J., VaughanD. and JonesD.1997. Rhizosphere carbon flow in trees, in comparison with annual plants: the importance of root exudation and its impact on microbial activity and nutrient availability. Applied Soil Ecology5, 29–56.
    [Google Scholar]
  74. GuyotA., OstergaardK.T., LenkopaneM., FanJ. and LockingtonD.A.2013. Using electrical resistivity tomography to differentiate sapwood from heartwood: application to conifers. Tree Physiology33, 187–194.
    [Google Scholar]
  75. HammesF., BoonN., de VilliersJ., VerstraeteW. and SicilianoS.D.2003. Strain‐specific ureolytic microbial calcium carbonate precipitation. Applied and Environmental Microbiology69, 4901–4909.
    [Google Scholar]
  76. HeenanJ., PorterA., NtarlagiannisD., YoungL.Y., WerkemaD.D. and SlaterL.D.2013. Sensitivity of the spectral induced polarization method to microbial enhanced oil recovery processes. Geophysics78, E261–E269.
    [Google Scholar]
  77. HeenanJ., SlaterL.D., NtarlagiannisD., AtekwanaE.A., FathepureB.Z., DalviS., et al. 2015. Electrical resistivity imaging for long‐term autonomous monitoring of hydrocarbon degradation: lessons from the Deepwater Horizon oil spill. Geophysics80, B1–B11.
    [Google Scholar]
  78. Herbert‐GuillouD., TribolletB., FestyD. and KiénéL.1999. In situ detection and characterization of biofilm in waters by electrochemical methods. Electrochimica Acta45, 1067–1075.
    [Google Scholar]
  79. HolderD.2004. Electrical Impedance Tomography: Methods, History and Applications. Boca Raton: CRC Press.
    [Google Scholar]
  80. HumphriesJ., XiongL., LiuJ., PrindleA., YuanF., ArjesH.A., et al. 2017. Species‐independent attraction to biofilms through electrical signaling. Cell168, 200–209.
    [Google Scholar]
  81. JohanssonS., FiandacaG. and DahlinT.2015. Influence of non‐aqueous phase liquid configuration on induced polarization parameters: conceptual models applied to a time‐domain field case study. Journal of Applied Geophysics123, 295–309.
    [Google Scholar]
  82. KanematsuH. and BarryD.M. (Eds.) 2015. Biofilm and Materials Science. Springer.
    [Google Scholar]
  83. KapplerA., EmersonD., EdwardsK., AmendJ., GralnickJ., GrathwohlP., et al. 2005. Microbial activity in biogeochemical gradients–new aspects of research. Geobiology3, 229–233.
    [Google Scholar]
  84. KelterM., HuismanJ.A., ZimmermannE. and VereeckenH.2018. Field evaluation of broadband spectral electrical imaging for soil and aquifer characterization. Journal of Applied Geophysics159, 484–496.
    [Google Scholar]
  85. KemnaA., BinleyA. and SlaterL.2004. Crosshole IP imaging for engineering and environmental applications. Geophysics69, 97–107.
    [Google Scholar]
  86. KemnaA., HuismanJ.A., ZimmermannE., MartinR., ZhaoY., TreichelA., et al. 2014. Broadband electrical impedance tomography for subsurface characterization using improved corrections of electromagnetic coupling and spectral regularization. In Tomography of the Earth's Crust: From Geophysical Sounding to Real‐Time Monitoring (eds M.Weber and U.Münch), pp. 1–20. Cham, Switzerland: Springer.
    [Google Scholar]
  87. KendallW.A., PefersonG.A. and HillR.R.1982. Root size estimates of red clover and alfalfa based on electrical capacitance and root diameter measurements. Grass and Forage Science37, 253–256.
    [Google Scholar]
  88. KessouriP., JohnsonT.C., Day‐LewisF.D., SlaterL.D., NtarlagiannisD. and JohnsonC.D.2016. Soil and groundwater VOCs contamination: How can electrical geophysical measurements help assess post‐bioremediation state? Abstract (Oral) presented at the 49th Annual Fall Meeting of the American Geophysical Union, San Francisco (USA), 12–13 December 2016.
  89. KettridgeN., ComasX., BairdA., SlaterL.D., StrackM., ThompsonD., et al. 2008. Ecohydrologically important subsurface structures in peatlands revealed by ground‐penetrating radar and complex conductivity surveys. Journal of Geophysical Research: Biogeosciences113, G04030.
    [Google Scholar]
  90. KimakC., NtarlagiannisD., SlaterL.D., AtekwanaE.A., BeaverC.L., RossbachS., et al. 2019. Geophysical monitoring of hydrocarbon biodegradation in highly conductive environments. Journal of Geophysical Research: Biogeosciences124, 353–366.
    [Google Scholar]
  91. KinniburghD.G., MilneC.J., BenedettiM.F., PinheiroJ.P., FiliusJ., KoopalL.K., et al. 1996. Metal ion binding by humic acid: application of the NICA‐Donnan model. Environmental Science and Technology30, 1687–1698.
    [Google Scholar]
  92. KinraideT.B.2001. Ion fluxes considered in terms of membrane‐surface electrical potentials. Australian Journal of Plant Physiology28, 607–618.
    [Google Scholar]
  93. KinraideT.B. and WangP.2010. The surface charge density of plant cell membranes (σ): an attempt to resolve conflicting values for intrinsic σ. Journal of Experimental Botany61, 2507–2518.
    [Google Scholar]
  94. KonhauserK.2007. Introduction to Geomicrobiology. Blackwell Publishing Ltd.
    [Google Scholar]
  95. KoopalL., Van RiemsdijkW., De WitJ. and BenedettiM.1994. Analytical isotherm equations for multicomponent adsorption to heterogeneous surfaces. Journal of Colloid and Interface Science166, 51–60.
    [Google Scholar]
  96. LamersL.P.M., van DiggelenJ.M.H., Op den CampH.J.M., VisserE.J.W., LucassenE.C.H.E.T., VileM.A., et al. 2012. Microbial transformations of nitrogen, sulfur, and iron dictate vegetation composition in wetlands: a review. Frontiers in Microbiology3, 156.
    [Google Scholar]
  97. LehmannJ. and KleberM.2015. The contentious nature of soil organic matter. Nature528, 60–68.
    [Google Scholar]
  98. LiL., MaherK., Navarre‐SitchlerA., DruhanJ., MeileC., LawrenceC., et al. 2017. Expanding the role of reactive transport models in critical zone processes. Earth Science Reviews165, 280–301.
    [Google Scholar]
  99. LoganB.E. and ReganJ.M.2006. Microbial Fuel Cells – Challenges and Applications. ACS Publications.
    [Google Scholar]
  100. MalvankarN.S., MesterT., TuominenM.T. and LovleyD.R.2012. Supercapacitors based on c‐type cytochromes using conductive nanostructured networks of living bacteria. ChemPhysChem13, 463–468.
    [Google Scholar]
  101. MarinskyJ.A., LinF.G. and ChungK.S.1983. A simple method for classification of the physical state of colloidal and particulate suspensions encountered in practice. The Journal of Physical Chemistry87, 3139–3145.
    [Google Scholar]
  102. MartinT.2012. Complex resistivity measurements on oak. European Journal of Wood and Wood Products70, 45–53.
    [Google Scholar]
  103. MartinT. and GüntherT.2013. Complex Resistivity tomography (CRT) for fungus detection on standing oak trees. European Journal of Forest Research132, 1–12.
    [Google Scholar]
  104. MartinT., NordsiekS. and WellerA.2015. Low‐frequency impedance spectroscopy of wood. Journal of Research in Spectroscopy2015, 910447.
    [Google Scholar]
  105. MaryB., AbdulsamadF., SaraccoG., PeyrasL., VennetierM., MériauxP., et al. 2017. Improvement of coarse root detection using time and frequency induced polarization: from laboratory to field experiments. Plant and Soil417, 243–259.
    [Google Scholar]
  106. MaryB., PeruzzoL., BoagaJ., SchmutzM., WuY., HubbardS.S., et al. 2018. Small scale characterization of vine plant root water uptake via 3D electrical resistivity tomography and Mise‐à‐la‐Masse method. Hydrology and Earth System Sciences22, 5427–5444.
    [Google Scholar]
  107. MaineultA., JougnotD. and RevilA.2018. Variations of petrophysical properties and spectral induced polarization in response to drainage and imbibition: a study on a correlated random tube network. Geophysical Journal International212, 1398–1411.
    [Google Scholar]
  108. MellageA., HolmesA.B., LinleyS., ValléeL., RezanezhadF., ThomsonN., et al. 2018a. Sensing coated iron‐oxide nanoparticles with spectral induced polarization (SIP): experiments in natural sand packed flow‐through columns. Environmental Science and Technology52, 14256–14265.
    [Google Scholar]
  109. MellageA., SmeatonC.M., FurmanA., AtekwanaE.A., RezanezhadF. and Van CappellenP.2018b. Linking spectral induced polarization (SIP) and subsurface microbial processes: results from sand column incubation experiments. Environmental Science and Technology52, 2081–2090.
    [Google Scholar]
  110. MitschW. and GosselinkJ.G.2015. Wetlands, 5th edn. Wiley.
    [Google Scholar]
  111. MulcahyH., Charron‐MazenodL. and LewenzaS.2008. Extracellular DNA chelates cations and induces antibiotic resistance in Pseudomonas aeruginosa biofilms. PLoS Pathogens4, e1000213.
    [Google Scholar]
  112. NealsonK.H.2017. Bioelectricity (electromicrobiology) and sustainability. Microbial Biotechnology10, 1114–1119.
    [Google Scholar]
  113. NicolottiG., SoccoL.V., MartinisR., GodioA. and SambuelliL.2003. Application and comparison of three tomographic techniques for detection of decay in trees. Journal of Aboriculture29, 66–78.
    [Google Scholar]
  114. NtarlagiannisD. and FergusonA.2009. SIP response of artificial biofilms. Geophysics74, A1–A5.
    [Google Scholar]
  115. NtarlagiannisD., RobinsonJ., SoupiosP. and SlaterL.2016. Field‐scale electrical geophysics over an olive oil mill waste deposition site: evaluating the information content of resistivity versus induced polarization (IP) images for delineating the spatial extent of organic contamination. Journal of Applied Geophysics135, 418–426.
    [Google Scholar]
  116. NtarlagiannisD., UstraA., KessouriP. and Flores‐OrozcoA.2018. The untapped potential of the induced polarization method: characterizing and monitoring hydrocarbon contamination in soils. FastTimes23, 10.
    [Google Scholar]
  117. NtarlagiannisD., WilliamsK.H., SlaterL. and HubbardS.2005. Low‐frequency electrical response to microbial induced sulfide precipitation. Journal of Geophysical Research: Biogeosciences110, G02009.
    [Google Scholar]
  118. OlssonP.‐I.2018. Advances in time–domain induced polarization tomography: data acquisition, processing and modelling. PhD thesis, Department of Biomedical Engineering, Lund University.
    [Google Scholar]
  119. ParkerN., SchneegurtM., TuA.‐H.T., ForsterB.M., ListerP.2017. Microbiology, Volume 1. OpenStax College. American Society for Microbiology.
  120. ParnasH.1975. Model for decomposition of organic material by microorganisms. Soil Biology and Biochemistry7, 161–169.
    [Google Scholar]
  121. PersonnaY.R., NtarlagiannisD., SlaterL.D., YeeN., O'BrienM. and HubbardS.2008. Spectral induced polarization and electrodic potential monitoring of microbially mediated iron sulfide transformation. Journal of Geophysical Research113, G02020.
    [Google Scholar]
  122. PersonnaY.R., SlaterL.D., NtarlagiannisD., WerkemaD. and SzaboZ.2013a. Complex resistivity signatures of ethanol biodegradation in porous media. Journal of Contaminant Hydrology153, 37–50.
    [Google Scholar]
  123. PersonnaY.R., SlaterL.D., NtarlagiannisD., WerkemaD. and SzaboZ.2013b. Complex resistivity signatures of ethanol in sand‐clay mixtures. Journal of Contaminant Hydrology149, 37–50.
    [Google Scholar]
  124. PesterM., KnorrK.‐H., FriedrichM.W., WagnerM., LoyA.2012. Sulfate‐reducing microorganisms in wetlands – fameless actors in carbon cycling and climate change. Frontiers in Microbiology3, 72.
    [Google Scholar]
  125. PiirtoD.D. and WilcoxW.W.1978. Critical evaluation of the pulsed‐current resistance meter for detection of decay in wood. Forest Product Journal28, 52–57.
    [Google Scholar]
  126. Pilon‐SmitsE.2005. Phytoremediation. Annual Review of Plant Biology56, 15–39.
    [Google Scholar]
  127. Placencia‐GómezE., SlaterL.D., NtarlagiannisD. and BinleyA.2013. Laboratory SIP signatures associated with oxidation of disseminated metal sulfides. Journal of Contaminant Hydrology148, 25–38.
    [Google Scholar]
  128. PonzianiM., SlobE.C., VanhalaH. and Ngan‐TillardD.J.M.2012. Influence of physical and chemical properties on the low‐frequency complex conductivity of peat. Near Surface Geophysics10, 491–501.
    [Google Scholar]
  129. PoortingaA.T., BosR., NordeW. and BusscherH.J.2002. Electric double layer interactions in bacterial adhesion to surfaces. Surface Science Reports47, 1–32.
    [Google Scholar]
  130. PosticF. and DoussanC.2016. Benchmarking electrical methods for rapid estimation of root biomass. Plant Methods12, 33.
    [Google Scholar]
  131. ProdanC., MayoF., ClaycombJ., Miller JrJ. and BenedikM.2004. Low‐frequency, low‐field dielectric spectroscopy of living cell suspensions. Journal of Applied Physics95, 3754–3756.
    [Google Scholar]
  132. RevilA., AtekwanaE., ZhangC., JardaniA. and SmithS.2012. A new model for the spectral induced polarization signature of bacterial growth in porous media. Water Resources Research48, W09545.
    [Google Scholar]
  133. RevilA., SchmutzM. and BatzleM.L.2011. Influence of oil wettability upon spectral induced polarization of oil‐bearing sands. Geophysics76, A31–A36.
    [Google Scholar]
  134. RosierC.L., AtekwanaE.A., AalG.A. and PatrauchanM.A.2019. Cell concentrations and metabolites enhance the SIP response to biofilm matrix components. Journal of Applied Geophysics160, 183–194.
    [Google Scholar]
  135. SaltD.E., SmithR.D. and RaskinI.1998. Phytoremediation. Annual Review of Plant Physiology and Plant Molecular Biology49, 643–668.
    [Google Scholar]
  136. SanchisA., BrownA., SanchoM., MartinezG., SebastianJ., MunozS., et al. 2007. Dielectric characterization of bacterial cells using dielectrophoresis. Bioelectromagnetics28, 393–401.
    [Google Scholar]
  137. SaneiyanS., NtarlagiannisD., Werkema ColwellF.S. and OhanJ.2016. Long term monitoring of microbial induced soil strengthening processes. Abstract presented at the 49th annual Fall Meeting of the American Geophysical Union, San Francisco (USA), 12–13 December 2016.
  138. SaneiyanS., NtarlagiannisD., WerkemaD.D.J. and UstraA.2018. Geophysical methods for monitoring soil stabilization processes. Journal of Applied Geophysics148, 234–244.
    [Google Scholar]
  139. SaneiyanS., NtarlagiannisD., OhanJ., LeeJ., ColwellF. and BurnsS.2019. Induced polarization as a monitoring tool for in‐situ microbial induced carbonate precipitation (MICP) processes. Ecological Engineering127, 36–47.
    [Google Scholar]
  140. SauckA.W., AtekwanaE.A., NashM.S.1998. High electrical conductivities associated with an LNAPL plume imaged by integrated geophysical techniques. Journal of Environmental and Engineering Geophysics2, 203–212.
    [Google Scholar]
  141. SchleiferN., WellerA., SchneiderS. and JungeA.2002. Investigation of a Bronze Age plankway by spectral induced polarization. Archaeological Prospection9, 243–253.
    [Google Scholar]
  142. SchmutzM., RevilA., VaudeletP., BatzleM., ViñaoP.F. and WerkemaD.D.J.2010. Influence of oil saturation upon spectral induced polarization of oil‐bearing sands. Geophysical Journal International183, 211–224.
    [Google Scholar]
  143. SchmutzM., BlondelA. and RevilA.2012. Saturation dependence of the quadrature conductivity of oil‐bearing sands. Geophysical Research Letters39, 2–7.
    [Google Scholar]
  144. SchwanH.P.1957. Electrical properties of tissue and cell suspensions. Advances in Biological and Medical Physics5, 147–209.
    [Google Scholar]
  145. SchwarzG.1962. A theory of the low‐frequency dielectric dispersion of colloidal particles in electrolyte solution. The Journal of Physical Chemistry66, 2636–2642.
    [Google Scholar]
  146. SchwartzN. and FurmanA.2015. On the spectral induced polarization signature of soil organic matter. Geophysical Journal International200, 589–595.
    [Google Scholar]
  147. ShigoA.L. and ShigoA.1974. Detection of discoloration and decay in living trees and utility poles. Res. Pap. NE‐294. Upper Darby, PA: U.S. Department of Agriculture, Forest Service, Northeastern Forest Experiment Station. 11p. Slater L.D., and Lesmes D. 2002. IP Interpretation in Environmental Investigations. Geophysics67, 77–88.
    [Google Scholar]
  148. SlaterL.D., NtarlagiannisD., PersonnaY.R. and HubbardS.S.2007. Pore‐scale spectral induced polarization signatures associated with FeS biomineral transformations. Geophysical Research Letters34, L21404.
    [Google Scholar]
  149. SlaterL. D., and LesmesD.2002. IP Interpretation in Environmental Investigations. Geophysics, 67(1), 77–88. https://doi.org/10.1190/1.1451353
    [Google Scholar]
  150. SmithR.W., FujitaY., HubbardS.S. and GinnT.R.2012. Field investigations of microbially facilitated calcite precipitation for immobilization of Strontium‐90 and other trace metals in the subsurface. 4th Annual Principal Investigators Meeting, Lansdowne, VA, 20, 23. Final No. DE‐FG02‐07ER64404.
  151. StammA.J.1930. An electrical conductivity method for determining the moisture content of wood. Industrial and Engineering Chemistry19, 1021–1025.
    [Google Scholar]
  152. StokesA., AtgerC., BengoughA.G., FourcaudT. and SidleR.C.2009. Desirable plant root traits for protecting natural and engineered slopes against landslides. Plant and Soil324, 1–30.
    [Google Scholar]
  153. SumnerJ.S.1976. Principles of Induced Polarization for Geophysical Exploration. Elsevier.
    [Google Scholar]
  154. SwansonF.J. and DyrnessC.T.1975. Impact of clear‐cutting and road construction on soil erosion by landslides in the western Cascade Range, Oregon. Geology3, 393.
    [Google Scholar]
  155. TinkerP.B. and NyeP.H.2000. Solute Movement in the Rhizosphere. Oxford University Press.
    [Google Scholar]
  156. UstraA., MendonçaC.A., NtarlagiannisD. and SlaterL.D.2016. Relaxation time distribution obtained from a Debye decomposition of spectral induced polarization data. Geophysics81, E129–138.
    [Google Scholar]
  157. UstraA., SlaterL.D., NtarlagiannisD. and ElisV.2012. Spectral induced polarization (SIP) signatures of clayey soils containing toluene. Near Surface Geophysics10, 503–515.
    [Google Scholar]
  158. VacheronJ., DesbrossesG., BouffaudM.‐L., TouraineB., Moënne‐LoccozY., MullerD., et al. 2013. Plant growth‐promoting rhizobacteria and root system functioning. Frontiers in Plant Science4, 356.
    [Google Scholar]
  159. VanderborghtJ., HuismanJ.A., van der KrukJ. and VereeckenH.2013. Geophysical methods for field‐scale imaging of root zone properties and processes. In Soil–Water–Root Processes: Advances in Tomography and Imaging, Vol. 61 (eds S.H.Anderson and J.W.Hopmans), pp. 247–282. SSSA Special Publication.
    [Google Scholar]
  160. van BeemJ., SmithM.E. and ZobelR.W.1998. Estimating root mass in maize using a portable capacitance meter. Agronomy Journal90, 566–570.
    [Google Scholar]
  161. van der WalA., MinorM., NordeW., ZehnderA.J. and LyklemaJ.1997a. Conductivity and dielectric dispersion of gram‐positive bacterial cells. Journal of colloid and Interface Science186, 71–79.
    [Google Scholar]
  162. van der WalA., MinorM., NordeW., ZehnderA.J. and LyklemaJ.1997b. Electrokinetic potential of bacterial cells. Langmuir13, 165–171.
    [Google Scholar]
  163. VanhalaH.1997. Laboratory and field studies of environmental and exploration applications of the spectral induced‐polarization (SIP) method. Doctoral thesis, Helsinki University of Technology, Finland.
  164. VinegarH.J. and WaxmanM.H.1984. Induced polarization of shaly sands. Geophysics49, 1267–1287.
    [Google Scholar]
  165. Vives‐RegoJ., LebaronP. and Nebe‐von CaronG.2000. Current and future applications of flow cytometry in aquatic microbiology. FEMS Microbiology Reviews24, 429–448.
    [Google Scholar]
  166. WalterJ., LückE., BauriegelA., RichterC. and ZeitzJ.2015. Multi‐scale analysis of electrical conductivity of peatlands for the assessment of peat properties. European Journal of Soil Science66, 639–650.
    [Google Scholar]
  167. WangP., KinraideT.B., ZhouD., KopittkeP.M. and PeijnenburgW.J.G.M.2011. Plasma membrane surface potential: dual effects upon ion uptake and toxicity. Plant Physiology155, 808–820.
    [Google Scholar]
  168. WangB., MezliniA.M., DemirF., FiumeM., TuZ., BrudnoM., et al. 2014. Similarity network fusion for aggregating data types on a genomic scale. Nature Methods11, 333.
    [Google Scholar]
  169. WanjariS., PrabhuC., YadavR., SatyanarayanaT., LabhsetwarN. and RayaluS.2011. Immobilization of carbonic anhydrase on chitosan beads for enhanced carbonation reaction. Process Biochemistry46, 1010–1018.
    [Google Scholar]
  170. WardS.H.1980. Electrical, electromagnetic, and magnetotelluric methods. Geophysics45, 1659–1666.
    [Google Scholar]
  171. WardmanC., NevinK.P. and LovleyD.R.2014. Real‐time monitoring of subsurface microbial metabolism with graphite electrodes. Frontiers in Microbiology5, 621.
    [Google Scholar]
  172. WeigandM.2017. Monitoring structural and physiological properties of crop roots using spectral electrical impedance tomography. PhD thesis, University of Bonn, Germany.
  173. WeigandM. and KemnaA.2016. Relationship between cole–cole model parameters and spectral decomposition parameters derived from SIP data. Geophysical Journal International205, 1414–1419.
    [Google Scholar]
  174. WeigandM. and KemnaA.2017. Multi‐frequency electrical impedance tomography as a non‐invasive tool to characterize and monitor crop root systems. Biogeosciences14, 921–939.
    [Google Scholar]
  175. WeigandM. and KemnaA.2019. Imaging and functional characterization of crop root systems using spectroscopic electrical impedance measurements. Plant and Soil435, 201–224.
    [Google Scholar]
  176. WeihsU., DubbelV., KrummheuerF. and JustA.1999. Die elektrische Widerstandstomographie. Forst und Holz54, 166–170.
    [Google Scholar]
  177. WhitchurchC.B., Tolker‐NielsenT., RagasP.C. and MattickJ.S.2002. Extracellular DNA required for bacterial biofilm formation. Science295, 1487–1487.
    [Google Scholar]
  178. WilleyJ.M., SherwoodL. and WoolvertonC.J.2014. Prescott's Microbiology, 9th edn. New York, NY: McGraw‐Hill.
    [Google Scholar]
  179. WilliamsK.H., NtarlagiannisD., SlaterL.D., DohnalkovaA., HubbardS.S. and BanfieldJ.F.2005. Geophysical imaging of stimulated microbial biomineralization. Environmental Science and Technology39, 7592–7600.
    [Google Scholar]
  180. WilliamsK.H., KemnaA., WilkinsM.J., DruhanJ., ArntzenE., N'GuessanA.L., et al. 2009, Geophysical monitoring of coupled microbial and geochemical processes during stimulated subsurface bioremediation. Environmental Science and Technology43, 6717–6723.
    [Google Scholar]
  181. WongJ.1979. An electrochemical model of the induced‐polarization phenomenon in disseminated sulfide ores. Geophysics44, 1245–1265.
    [Google Scholar]
  182. WuY., Ajo‐FranklinJ.B., SpycherN., HubbardS.S., ZhangG., WilliamsK.H., et al. 2011. Geophysical monitoring and reactive transport modeling of ureolytically‐driven calcium carbonate precipitation. Geochemical Transactions12, 1–20.
    [Google Scholar]
  183. WuY., HubbardS.S., WilliamsK.H. and Ajo‐FranklinJ.2010. On the complex conductivity signatures of calcite precipitation. Journal of Geophysical Research: Biogeosciences115, G00G04.
    [Google Scholar]
  184. WuY., SlaterL.D., VersteegR. and LaBrecqueD.2008. A comparison of the low frequency electrical signatures of iron oxide versus calcite precipitation in granular zero valent iron columns. Journal of Contaminant Hydrology95, 154–67.
    [Google Scholar]
  185. WuY., VersteegR., SlaterL. and LaBrecqueD.2009. Calcite precipitation dominates the electrical signatures of zero valent iron columns under simulated field conditions. Journal of Contaminant Hydrology106, 131–43.
    [Google Scholar]
  186. WuY., SurasaniV.K., LiL. and HubbardS.S.2014. Geophysical monitoring and reactive transport simulations of bioclogging processes induced by Leuconostoc mesenteroides Bioclogging monitoring and simulation. Geophysics79, E61–E73.
    [Google Scholar]
  187. YadavR., LabhsetwarN., KotwalS. and RayaluS.2011. Single enzyme nanoparticle for biomimetic CO2 sequestration. Journal of Nanoparticle Research13, 263–271.
    [Google Scholar]
  188. ZarifF., KessouriP. and SlaterL.D.2017. Recommendations for field‐scale induced polarization (IP) data acquisition and interpretation. Journal of Environmental and Engineering Geophysics22, 395–410.
    [Google Scholar]
  189. ZhangC., RevilA., FujitaY., Munakata‐MarrJ. and ReddenG.2014. Quadrature conductivity: a quantitative indicator of bacterial abundance in porous media. Geophysics79, D363–D375.
    [Google Scholar]
  190. ZhangC., SlaterL.D., ReddenG., FujitaY., JohnsonT. and FoxD.2012. Spectral induced polarization signatures of hydroxyl adsorption in porous media. Environmental Science and Technology46, 4357–4364.
    [Google Scholar]
  191. ZhaoY., ZimmermannE., HuismanJ.A., TreichelA., WoltersB., van WaassenS., et al. 2013. Broadband EIT borehole measurements with high phase accuracy using numerical corrections of electromagnetic coupling effects. Measurement Science and Technology24, 085005.
    [Google Scholar]
  192. ZhaoY., ZimmermannE., HuismanJ.A., TreichelA., WoltersB., van WaasenS., et al. 2015. Phase corrections of electromagnetic coupling effects in cross‐borehole EIT measurements. Measurement Science and Technology26, 15801.
    [Google Scholar]
  193. ZimmermannE., HuismanJ.A., MesterA. and van WaasenS.2019. Correction of phase errors due to leakage currents in wideband field EIT measurements on soil and sediments. Measurement Science and Technology30, 084002.
    [Google Scholar]
  194. ZürcherE.1988. Diagnosemethode des Gesundheits und Vitalitätszustandes der Bäume. Vierteljahresschr. Naturforsch. Ges. Zürich133(1), 25–42.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1002/nsg.12072
Loading
/content/journals/10.1002/nsg.12072
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): Complex conductivity; Hydrogeophysics; Induced polarization; IP; Pollution

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error